Cargando…
Transcriptomics in Toxicogenomics, Part III: Data Modelling for Risk Assessment
Transcriptomics data are relevant to address a number of challenges in Toxicogenomics (TGx). After careful planning of exposure conditions and data preprocessing, the TGx data can be used in predictive toxicology, where more advanced modelling techniques are applied. The large volume of molecular pr...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7221955/ https://www.ncbi.nlm.nih.gov/pubmed/32276469 http://dx.doi.org/10.3390/nano10040708 |
_version_ | 1783533477798346752 |
---|---|
author | Serra, Angela Fratello, Michele Cattelani, Luca Liampa, Irene Melagraki, Georgia Kohonen, Pekka Nymark, Penny Federico, Antonio Kinaret, Pia Anneli Sofia Jagiello, Karolina Ha, My Kieu Choi, Jang-Sik Sanabria, Natasha Gulumian, Mary Puzyn, Tomasz Yoon, Tae-Hyun Sarimveis, Haralambos Grafström, Roland Afantitis, Antreas Greco, Dario |
author_facet | Serra, Angela Fratello, Michele Cattelani, Luca Liampa, Irene Melagraki, Georgia Kohonen, Pekka Nymark, Penny Federico, Antonio Kinaret, Pia Anneli Sofia Jagiello, Karolina Ha, My Kieu Choi, Jang-Sik Sanabria, Natasha Gulumian, Mary Puzyn, Tomasz Yoon, Tae-Hyun Sarimveis, Haralambos Grafström, Roland Afantitis, Antreas Greco, Dario |
author_sort | Serra, Angela |
collection | PubMed |
description | Transcriptomics data are relevant to address a number of challenges in Toxicogenomics (TGx). After careful planning of exposure conditions and data preprocessing, the TGx data can be used in predictive toxicology, where more advanced modelling techniques are applied. The large volume of molecular profiles produced by omics-based technologies allows the development and application of artificial intelligence (AI) methods in TGx. Indeed, the publicly available omics datasets are constantly increasing together with a plethora of different methods that are made available to facilitate their analysis, interpretation and the generation of accurate and stable predictive models. In this review, we present the state-of-the-art of data modelling applied to transcriptomics data in TGx. We show how the benchmark dose (BMD) analysis can be applied to TGx data. We review read across and adverse outcome pathways (AOP) modelling methodologies. We discuss how network-based approaches can be successfully employed to clarify the mechanism of action (MOA) or specific biomarkers of exposure. We also describe the main AI methodologies applied to TGx data to create predictive classification and regression models and we address current challenges. Finally, we present a short description of deep learning (DL) and data integration methodologies applied in these contexts. Modelling of TGx data represents a valuable tool for more accurate chemical safety assessment. This review is the third part of a three-article series on Transcriptomics in Toxicogenomics. |
format | Online Article Text |
id | pubmed-7221955 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-72219552020-05-22 Transcriptomics in Toxicogenomics, Part III: Data Modelling for Risk Assessment Serra, Angela Fratello, Michele Cattelani, Luca Liampa, Irene Melagraki, Georgia Kohonen, Pekka Nymark, Penny Federico, Antonio Kinaret, Pia Anneli Sofia Jagiello, Karolina Ha, My Kieu Choi, Jang-Sik Sanabria, Natasha Gulumian, Mary Puzyn, Tomasz Yoon, Tae-Hyun Sarimveis, Haralambos Grafström, Roland Afantitis, Antreas Greco, Dario Nanomaterials (Basel) Review Transcriptomics data are relevant to address a number of challenges in Toxicogenomics (TGx). After careful planning of exposure conditions and data preprocessing, the TGx data can be used in predictive toxicology, where more advanced modelling techniques are applied. The large volume of molecular profiles produced by omics-based technologies allows the development and application of artificial intelligence (AI) methods in TGx. Indeed, the publicly available omics datasets are constantly increasing together with a plethora of different methods that are made available to facilitate their analysis, interpretation and the generation of accurate and stable predictive models. In this review, we present the state-of-the-art of data modelling applied to transcriptomics data in TGx. We show how the benchmark dose (BMD) analysis can be applied to TGx data. We review read across and adverse outcome pathways (AOP) modelling methodologies. We discuss how network-based approaches can be successfully employed to clarify the mechanism of action (MOA) or specific biomarkers of exposure. We also describe the main AI methodologies applied to TGx data to create predictive classification and regression models and we address current challenges. Finally, we present a short description of deep learning (DL) and data integration methodologies applied in these contexts. Modelling of TGx data represents a valuable tool for more accurate chemical safety assessment. This review is the third part of a three-article series on Transcriptomics in Toxicogenomics. MDPI 2020-04-08 /pmc/articles/PMC7221955/ /pubmed/32276469 http://dx.doi.org/10.3390/nano10040708 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Serra, Angela Fratello, Michele Cattelani, Luca Liampa, Irene Melagraki, Georgia Kohonen, Pekka Nymark, Penny Federico, Antonio Kinaret, Pia Anneli Sofia Jagiello, Karolina Ha, My Kieu Choi, Jang-Sik Sanabria, Natasha Gulumian, Mary Puzyn, Tomasz Yoon, Tae-Hyun Sarimveis, Haralambos Grafström, Roland Afantitis, Antreas Greco, Dario Transcriptomics in Toxicogenomics, Part III: Data Modelling for Risk Assessment |
title | Transcriptomics in Toxicogenomics, Part III: Data Modelling for Risk Assessment |
title_full | Transcriptomics in Toxicogenomics, Part III: Data Modelling for Risk Assessment |
title_fullStr | Transcriptomics in Toxicogenomics, Part III: Data Modelling for Risk Assessment |
title_full_unstemmed | Transcriptomics in Toxicogenomics, Part III: Data Modelling for Risk Assessment |
title_short | Transcriptomics in Toxicogenomics, Part III: Data Modelling for Risk Assessment |
title_sort | transcriptomics in toxicogenomics, part iii: data modelling for risk assessment |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7221955/ https://www.ncbi.nlm.nih.gov/pubmed/32276469 http://dx.doi.org/10.3390/nano10040708 |
work_keys_str_mv | AT serraangela transcriptomicsintoxicogenomicspartiiidatamodellingforriskassessment AT fratellomichele transcriptomicsintoxicogenomicspartiiidatamodellingforriskassessment AT cattelaniluca transcriptomicsintoxicogenomicspartiiidatamodellingforriskassessment AT liampairene transcriptomicsintoxicogenomicspartiiidatamodellingforriskassessment AT melagrakigeorgia transcriptomicsintoxicogenomicspartiiidatamodellingforriskassessment AT kohonenpekka transcriptomicsintoxicogenomicspartiiidatamodellingforriskassessment AT nymarkpenny transcriptomicsintoxicogenomicspartiiidatamodellingforriskassessment AT federicoantonio transcriptomicsintoxicogenomicspartiiidatamodellingforriskassessment AT kinaretpiaannelisofia transcriptomicsintoxicogenomicspartiiidatamodellingforriskassessment AT jagiellokarolina transcriptomicsintoxicogenomicspartiiidatamodellingforriskassessment AT hamykieu transcriptomicsintoxicogenomicspartiiidatamodellingforriskassessment AT choijangsik transcriptomicsintoxicogenomicspartiiidatamodellingforriskassessment AT sanabrianatasha transcriptomicsintoxicogenomicspartiiidatamodellingforriskassessment AT gulumianmary transcriptomicsintoxicogenomicspartiiidatamodellingforriskassessment AT puzyntomasz transcriptomicsintoxicogenomicspartiiidatamodellingforriskassessment AT yoontaehyun transcriptomicsintoxicogenomicspartiiidatamodellingforriskassessment AT sarimveisharalambos transcriptomicsintoxicogenomicspartiiidatamodellingforriskassessment AT grafstromroland transcriptomicsintoxicogenomicspartiiidatamodellingforriskassessment AT afantitisantreas transcriptomicsintoxicogenomicspartiiidatamodellingforriskassessment AT grecodario transcriptomicsintoxicogenomicspartiiidatamodellingforriskassessment |