Cargando…

Transcriptomics in Toxicogenomics, Part III: Data Modelling for Risk Assessment

Transcriptomics data are relevant to address a number of challenges in Toxicogenomics (TGx). After careful planning of exposure conditions and data preprocessing, the TGx data can be used in predictive toxicology, where more advanced modelling techniques are applied. The large volume of molecular pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Serra, Angela, Fratello, Michele, Cattelani, Luca, Liampa, Irene, Melagraki, Georgia, Kohonen, Pekka, Nymark, Penny, Federico, Antonio, Kinaret, Pia Anneli Sofia, Jagiello, Karolina, Ha, My Kieu, Choi, Jang-Sik, Sanabria, Natasha, Gulumian, Mary, Puzyn, Tomasz, Yoon, Tae-Hyun, Sarimveis, Haralambos, Grafström, Roland, Afantitis, Antreas, Greco, Dario
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7221955/
https://www.ncbi.nlm.nih.gov/pubmed/32276469
http://dx.doi.org/10.3390/nano10040708
_version_ 1783533477798346752
author Serra, Angela
Fratello, Michele
Cattelani, Luca
Liampa, Irene
Melagraki, Georgia
Kohonen, Pekka
Nymark, Penny
Federico, Antonio
Kinaret, Pia Anneli Sofia
Jagiello, Karolina
Ha, My Kieu
Choi, Jang-Sik
Sanabria, Natasha
Gulumian, Mary
Puzyn, Tomasz
Yoon, Tae-Hyun
Sarimveis, Haralambos
Grafström, Roland
Afantitis, Antreas
Greco, Dario
author_facet Serra, Angela
Fratello, Michele
Cattelani, Luca
Liampa, Irene
Melagraki, Georgia
Kohonen, Pekka
Nymark, Penny
Federico, Antonio
Kinaret, Pia Anneli Sofia
Jagiello, Karolina
Ha, My Kieu
Choi, Jang-Sik
Sanabria, Natasha
Gulumian, Mary
Puzyn, Tomasz
Yoon, Tae-Hyun
Sarimveis, Haralambos
Grafström, Roland
Afantitis, Antreas
Greco, Dario
author_sort Serra, Angela
collection PubMed
description Transcriptomics data are relevant to address a number of challenges in Toxicogenomics (TGx). After careful planning of exposure conditions and data preprocessing, the TGx data can be used in predictive toxicology, where more advanced modelling techniques are applied. The large volume of molecular profiles produced by omics-based technologies allows the development and application of artificial intelligence (AI) methods in TGx. Indeed, the publicly available omics datasets are constantly increasing together with a plethora of different methods that are made available to facilitate their analysis, interpretation and the generation of accurate and stable predictive models. In this review, we present the state-of-the-art of data modelling applied to transcriptomics data in TGx. We show how the benchmark dose (BMD) analysis can be applied to TGx data. We review read across and adverse outcome pathways (AOP) modelling methodologies. We discuss how network-based approaches can be successfully employed to clarify the mechanism of action (MOA) or specific biomarkers of exposure. We also describe the main AI methodologies applied to TGx data to create predictive classification and regression models and we address current challenges. Finally, we present a short description of deep learning (DL) and data integration methodologies applied in these contexts. Modelling of TGx data represents a valuable tool for more accurate chemical safety assessment. This review is the third part of a three-article series on Transcriptomics in Toxicogenomics.
format Online
Article
Text
id pubmed-7221955
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-72219552020-05-22 Transcriptomics in Toxicogenomics, Part III: Data Modelling for Risk Assessment Serra, Angela Fratello, Michele Cattelani, Luca Liampa, Irene Melagraki, Georgia Kohonen, Pekka Nymark, Penny Federico, Antonio Kinaret, Pia Anneli Sofia Jagiello, Karolina Ha, My Kieu Choi, Jang-Sik Sanabria, Natasha Gulumian, Mary Puzyn, Tomasz Yoon, Tae-Hyun Sarimveis, Haralambos Grafström, Roland Afantitis, Antreas Greco, Dario Nanomaterials (Basel) Review Transcriptomics data are relevant to address a number of challenges in Toxicogenomics (TGx). After careful planning of exposure conditions and data preprocessing, the TGx data can be used in predictive toxicology, where more advanced modelling techniques are applied. The large volume of molecular profiles produced by omics-based technologies allows the development and application of artificial intelligence (AI) methods in TGx. Indeed, the publicly available omics datasets are constantly increasing together with a plethora of different methods that are made available to facilitate their analysis, interpretation and the generation of accurate and stable predictive models. In this review, we present the state-of-the-art of data modelling applied to transcriptomics data in TGx. We show how the benchmark dose (BMD) analysis can be applied to TGx data. We review read across and adverse outcome pathways (AOP) modelling methodologies. We discuss how network-based approaches can be successfully employed to clarify the mechanism of action (MOA) or specific biomarkers of exposure. We also describe the main AI methodologies applied to TGx data to create predictive classification and regression models and we address current challenges. Finally, we present a short description of deep learning (DL) and data integration methodologies applied in these contexts. Modelling of TGx data represents a valuable tool for more accurate chemical safety assessment. This review is the third part of a three-article series on Transcriptomics in Toxicogenomics. MDPI 2020-04-08 /pmc/articles/PMC7221955/ /pubmed/32276469 http://dx.doi.org/10.3390/nano10040708 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Serra, Angela
Fratello, Michele
Cattelani, Luca
Liampa, Irene
Melagraki, Georgia
Kohonen, Pekka
Nymark, Penny
Federico, Antonio
Kinaret, Pia Anneli Sofia
Jagiello, Karolina
Ha, My Kieu
Choi, Jang-Sik
Sanabria, Natasha
Gulumian, Mary
Puzyn, Tomasz
Yoon, Tae-Hyun
Sarimveis, Haralambos
Grafström, Roland
Afantitis, Antreas
Greco, Dario
Transcriptomics in Toxicogenomics, Part III: Data Modelling for Risk Assessment
title Transcriptomics in Toxicogenomics, Part III: Data Modelling for Risk Assessment
title_full Transcriptomics in Toxicogenomics, Part III: Data Modelling for Risk Assessment
title_fullStr Transcriptomics in Toxicogenomics, Part III: Data Modelling for Risk Assessment
title_full_unstemmed Transcriptomics in Toxicogenomics, Part III: Data Modelling for Risk Assessment
title_short Transcriptomics in Toxicogenomics, Part III: Data Modelling for Risk Assessment
title_sort transcriptomics in toxicogenomics, part iii: data modelling for risk assessment
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7221955/
https://www.ncbi.nlm.nih.gov/pubmed/32276469
http://dx.doi.org/10.3390/nano10040708
work_keys_str_mv AT serraangela transcriptomicsintoxicogenomicspartiiidatamodellingforriskassessment
AT fratellomichele transcriptomicsintoxicogenomicspartiiidatamodellingforriskassessment
AT cattelaniluca transcriptomicsintoxicogenomicspartiiidatamodellingforriskassessment
AT liampairene transcriptomicsintoxicogenomicspartiiidatamodellingforriskassessment
AT melagrakigeorgia transcriptomicsintoxicogenomicspartiiidatamodellingforriskassessment
AT kohonenpekka transcriptomicsintoxicogenomicspartiiidatamodellingforriskassessment
AT nymarkpenny transcriptomicsintoxicogenomicspartiiidatamodellingforriskassessment
AT federicoantonio transcriptomicsintoxicogenomicspartiiidatamodellingforriskassessment
AT kinaretpiaannelisofia transcriptomicsintoxicogenomicspartiiidatamodellingforriskassessment
AT jagiellokarolina transcriptomicsintoxicogenomicspartiiidatamodellingforriskassessment
AT hamykieu transcriptomicsintoxicogenomicspartiiidatamodellingforriskassessment
AT choijangsik transcriptomicsintoxicogenomicspartiiidatamodellingforriskassessment
AT sanabrianatasha transcriptomicsintoxicogenomicspartiiidatamodellingforriskassessment
AT gulumianmary transcriptomicsintoxicogenomicspartiiidatamodellingforriskassessment
AT puzyntomasz transcriptomicsintoxicogenomicspartiiidatamodellingforriskassessment
AT yoontaehyun transcriptomicsintoxicogenomicspartiiidatamodellingforriskassessment
AT sarimveisharalambos transcriptomicsintoxicogenomicspartiiidatamodellingforriskassessment
AT grafstromroland transcriptomicsintoxicogenomicspartiiidatamodellingforriskassessment
AT afantitisantreas transcriptomicsintoxicogenomicspartiiidatamodellingforriskassessment
AT grecodario transcriptomicsintoxicogenomicspartiiidatamodellingforriskassessment