Cargando…

Predicting sporadic Alzheimer’s disease progression via inherited Alzheimer’s disease-informed machine-learning

INTRODUCTION: Developing cross-validated multi-biomarker models for the prediction of the rate of cognitive decline in Alzheimer’s disease (AD) is a critical yet unmet clinical challenge. METHODS: We applied support vector regression to AD biomarkers derived from cerebrospinal fluid, structural magn...

Descripción completa

Detalles Bibliográficos
Autores principales: Franzmeier, Nicolai, Koutsouleris, Nikolaos, Benzinger, Tammie, Goate, Alison, Karch, Celeste M., Fagan, Anne M., McDade, Eric, Duering, Marco, Dichgans, Martin, Levin, Johannes, Gordon, Brian A., Lim, Yen Ying, Masters, Colin L., Rossor, Martin, Fox, Nick C., O’Connor, Antoinette, Chhatwal, Jasmeer, Salloway, Stephen, Danek, Adrian, Hassenstab, Jason, Schofield, Peter R., Morris, John C., Bateman, Randall J., Ewers, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7222030/
https://www.ncbi.nlm.nih.gov/pubmed/32043733
http://dx.doi.org/10.1002/alz.12032
_version_ 1783533494370041856
author Franzmeier, Nicolai
Koutsouleris, Nikolaos
Benzinger, Tammie
Goate, Alison
Karch, Celeste M.
Fagan, Anne M.
McDade, Eric
Duering, Marco
Dichgans, Martin
Levin, Johannes
Gordon, Brian A.
Lim, Yen Ying
Masters, Colin L.
Rossor, Martin
Fox, Nick C.
O’Connor, Antoinette
Chhatwal, Jasmeer
Salloway, Stephen
Danek, Adrian
Hassenstab, Jason
Schofield, Peter R.
Morris, John C.
Bateman, Randall J.
Ewers, Michael
author_facet Franzmeier, Nicolai
Koutsouleris, Nikolaos
Benzinger, Tammie
Goate, Alison
Karch, Celeste M.
Fagan, Anne M.
McDade, Eric
Duering, Marco
Dichgans, Martin
Levin, Johannes
Gordon, Brian A.
Lim, Yen Ying
Masters, Colin L.
Rossor, Martin
Fox, Nick C.
O’Connor, Antoinette
Chhatwal, Jasmeer
Salloway, Stephen
Danek, Adrian
Hassenstab, Jason
Schofield, Peter R.
Morris, John C.
Bateman, Randall J.
Ewers, Michael
author_sort Franzmeier, Nicolai
collection PubMed
description INTRODUCTION: Developing cross-validated multi-biomarker models for the prediction of the rate of cognitive decline in Alzheimer’s disease (AD) is a critical yet unmet clinical challenge. METHODS: We applied support vector regression to AD biomarkers derived from cerebrospinal fluid, structural magnetic resonance imaging (MRI), amyloid-PET and fluorodeoxyglucose positron-emission tomography (FDG-PET) to predict rates of cognitive decline. Prediction models were trained in autosomal-dominant Alzheimer’s disease (ADAD, n = 121) and subsequently cross-validated in sporadic prodromal AD (n = 216). The sample size needed to detect treatment effects when using model-based risk enrichment was estimated. RESULTS: A model combining all biomarker modalities and established in ADAD predicted the 4-year rate of decline in global cognition (R(2) = 24%) and memory (R(2) =25%) in sporadic AD. Model-based risk-enrichment reduced the sample size required for detecting simulated intervention effects by 50%–75%. DISCUSSION: Our independently validated machine-learning model predicted cognitive decline in sporadic prodromal AD and may substantially reduce sample size needed in clinical trials in AD.
format Online
Article
Text
id pubmed-7222030
institution National Center for Biotechnology Information
language English
publishDate 2020
record_format MEDLINE/PubMed
spelling pubmed-72220302021-03-01 Predicting sporadic Alzheimer’s disease progression via inherited Alzheimer’s disease-informed machine-learning Franzmeier, Nicolai Koutsouleris, Nikolaos Benzinger, Tammie Goate, Alison Karch, Celeste M. Fagan, Anne M. McDade, Eric Duering, Marco Dichgans, Martin Levin, Johannes Gordon, Brian A. Lim, Yen Ying Masters, Colin L. Rossor, Martin Fox, Nick C. O’Connor, Antoinette Chhatwal, Jasmeer Salloway, Stephen Danek, Adrian Hassenstab, Jason Schofield, Peter R. Morris, John C. Bateman, Randall J. Ewers, Michael Alzheimers Dement Article INTRODUCTION: Developing cross-validated multi-biomarker models for the prediction of the rate of cognitive decline in Alzheimer’s disease (AD) is a critical yet unmet clinical challenge. METHODS: We applied support vector regression to AD biomarkers derived from cerebrospinal fluid, structural magnetic resonance imaging (MRI), amyloid-PET and fluorodeoxyglucose positron-emission tomography (FDG-PET) to predict rates of cognitive decline. Prediction models were trained in autosomal-dominant Alzheimer’s disease (ADAD, n = 121) and subsequently cross-validated in sporadic prodromal AD (n = 216). The sample size needed to detect treatment effects when using model-based risk enrichment was estimated. RESULTS: A model combining all biomarker modalities and established in ADAD predicted the 4-year rate of decline in global cognition (R(2) = 24%) and memory (R(2) =25%) in sporadic AD. Model-based risk-enrichment reduced the sample size required for detecting simulated intervention effects by 50%–75%. DISCUSSION: Our independently validated machine-learning model predicted cognitive decline in sporadic prodromal AD and may substantially reduce sample size needed in clinical trials in AD. 2020-02-11 2020-03 /pmc/articles/PMC7222030/ /pubmed/32043733 http://dx.doi.org/10.1002/alz.12032 Text en http://creativecommons.org/licenses/by/4.0/ This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Article
Franzmeier, Nicolai
Koutsouleris, Nikolaos
Benzinger, Tammie
Goate, Alison
Karch, Celeste M.
Fagan, Anne M.
McDade, Eric
Duering, Marco
Dichgans, Martin
Levin, Johannes
Gordon, Brian A.
Lim, Yen Ying
Masters, Colin L.
Rossor, Martin
Fox, Nick C.
O’Connor, Antoinette
Chhatwal, Jasmeer
Salloway, Stephen
Danek, Adrian
Hassenstab, Jason
Schofield, Peter R.
Morris, John C.
Bateman, Randall J.
Ewers, Michael
Predicting sporadic Alzheimer’s disease progression via inherited Alzheimer’s disease-informed machine-learning
title Predicting sporadic Alzheimer’s disease progression via inherited Alzheimer’s disease-informed machine-learning
title_full Predicting sporadic Alzheimer’s disease progression via inherited Alzheimer’s disease-informed machine-learning
title_fullStr Predicting sporadic Alzheimer’s disease progression via inherited Alzheimer’s disease-informed machine-learning
title_full_unstemmed Predicting sporadic Alzheimer’s disease progression via inherited Alzheimer’s disease-informed machine-learning
title_short Predicting sporadic Alzheimer’s disease progression via inherited Alzheimer’s disease-informed machine-learning
title_sort predicting sporadic alzheimer’s disease progression via inherited alzheimer’s disease-informed machine-learning
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7222030/
https://www.ncbi.nlm.nih.gov/pubmed/32043733
http://dx.doi.org/10.1002/alz.12032
work_keys_str_mv AT franzmeiernicolai predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning
AT koutsoulerisnikolaos predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning
AT benzingertammie predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning
AT goatealison predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning
AT karchcelestem predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning
AT faganannem predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning
AT mcdadeeric predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning
AT dueringmarco predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning
AT dichgansmartin predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning
AT levinjohannes predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning
AT gordonbriana predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning
AT limyenying predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning
AT masterscolinl predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning
AT rossormartin predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning
AT foxnickc predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning
AT oconnorantoinette predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning
AT chhatwaljasmeer predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning
AT sallowaystephen predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning
AT danekadrian predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning
AT hassenstabjason predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning
AT schofieldpeterr predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning
AT morrisjohnc predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning
AT batemanrandallj predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning
AT predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning
AT predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning
AT ewersmichael predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning