Cargando…
Predicting sporadic Alzheimer’s disease progression via inherited Alzheimer’s disease-informed machine-learning
INTRODUCTION: Developing cross-validated multi-biomarker models for the prediction of the rate of cognitive decline in Alzheimer’s disease (AD) is a critical yet unmet clinical challenge. METHODS: We applied support vector regression to AD biomarkers derived from cerebrospinal fluid, structural magn...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7222030/ https://www.ncbi.nlm.nih.gov/pubmed/32043733 http://dx.doi.org/10.1002/alz.12032 |
_version_ | 1783533494370041856 |
---|---|
author | Franzmeier, Nicolai Koutsouleris, Nikolaos Benzinger, Tammie Goate, Alison Karch, Celeste M. Fagan, Anne M. McDade, Eric Duering, Marco Dichgans, Martin Levin, Johannes Gordon, Brian A. Lim, Yen Ying Masters, Colin L. Rossor, Martin Fox, Nick C. O’Connor, Antoinette Chhatwal, Jasmeer Salloway, Stephen Danek, Adrian Hassenstab, Jason Schofield, Peter R. Morris, John C. Bateman, Randall J. Ewers, Michael |
author_facet | Franzmeier, Nicolai Koutsouleris, Nikolaos Benzinger, Tammie Goate, Alison Karch, Celeste M. Fagan, Anne M. McDade, Eric Duering, Marco Dichgans, Martin Levin, Johannes Gordon, Brian A. Lim, Yen Ying Masters, Colin L. Rossor, Martin Fox, Nick C. O’Connor, Antoinette Chhatwal, Jasmeer Salloway, Stephen Danek, Adrian Hassenstab, Jason Schofield, Peter R. Morris, John C. Bateman, Randall J. Ewers, Michael |
author_sort | Franzmeier, Nicolai |
collection | PubMed |
description | INTRODUCTION: Developing cross-validated multi-biomarker models for the prediction of the rate of cognitive decline in Alzheimer’s disease (AD) is a critical yet unmet clinical challenge. METHODS: We applied support vector regression to AD biomarkers derived from cerebrospinal fluid, structural magnetic resonance imaging (MRI), amyloid-PET and fluorodeoxyglucose positron-emission tomography (FDG-PET) to predict rates of cognitive decline. Prediction models were trained in autosomal-dominant Alzheimer’s disease (ADAD, n = 121) and subsequently cross-validated in sporadic prodromal AD (n = 216). The sample size needed to detect treatment effects when using model-based risk enrichment was estimated. RESULTS: A model combining all biomarker modalities and established in ADAD predicted the 4-year rate of decline in global cognition (R(2) = 24%) and memory (R(2) =25%) in sporadic AD. Model-based risk-enrichment reduced the sample size required for detecting simulated intervention effects by 50%–75%. DISCUSSION: Our independently validated machine-learning model predicted cognitive decline in sporadic prodromal AD and may substantially reduce sample size needed in clinical trials in AD. |
format | Online Article Text |
id | pubmed-7222030 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
record_format | MEDLINE/PubMed |
spelling | pubmed-72220302021-03-01 Predicting sporadic Alzheimer’s disease progression via inherited Alzheimer’s disease-informed machine-learning Franzmeier, Nicolai Koutsouleris, Nikolaos Benzinger, Tammie Goate, Alison Karch, Celeste M. Fagan, Anne M. McDade, Eric Duering, Marco Dichgans, Martin Levin, Johannes Gordon, Brian A. Lim, Yen Ying Masters, Colin L. Rossor, Martin Fox, Nick C. O’Connor, Antoinette Chhatwal, Jasmeer Salloway, Stephen Danek, Adrian Hassenstab, Jason Schofield, Peter R. Morris, John C. Bateman, Randall J. Ewers, Michael Alzheimers Dement Article INTRODUCTION: Developing cross-validated multi-biomarker models for the prediction of the rate of cognitive decline in Alzheimer’s disease (AD) is a critical yet unmet clinical challenge. METHODS: We applied support vector regression to AD biomarkers derived from cerebrospinal fluid, structural magnetic resonance imaging (MRI), amyloid-PET and fluorodeoxyglucose positron-emission tomography (FDG-PET) to predict rates of cognitive decline. Prediction models were trained in autosomal-dominant Alzheimer’s disease (ADAD, n = 121) and subsequently cross-validated in sporadic prodromal AD (n = 216). The sample size needed to detect treatment effects when using model-based risk enrichment was estimated. RESULTS: A model combining all biomarker modalities and established in ADAD predicted the 4-year rate of decline in global cognition (R(2) = 24%) and memory (R(2) =25%) in sporadic AD. Model-based risk-enrichment reduced the sample size required for detecting simulated intervention effects by 50%–75%. DISCUSSION: Our independently validated machine-learning model predicted cognitive decline in sporadic prodromal AD and may substantially reduce sample size needed in clinical trials in AD. 2020-02-11 2020-03 /pmc/articles/PMC7222030/ /pubmed/32043733 http://dx.doi.org/10.1002/alz.12032 Text en http://creativecommons.org/licenses/by/4.0/ This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Article Franzmeier, Nicolai Koutsouleris, Nikolaos Benzinger, Tammie Goate, Alison Karch, Celeste M. Fagan, Anne M. McDade, Eric Duering, Marco Dichgans, Martin Levin, Johannes Gordon, Brian A. Lim, Yen Ying Masters, Colin L. Rossor, Martin Fox, Nick C. O’Connor, Antoinette Chhatwal, Jasmeer Salloway, Stephen Danek, Adrian Hassenstab, Jason Schofield, Peter R. Morris, John C. Bateman, Randall J. Ewers, Michael Predicting sporadic Alzheimer’s disease progression via inherited Alzheimer’s disease-informed machine-learning |
title | Predicting sporadic Alzheimer’s disease progression via inherited Alzheimer’s disease-informed machine-learning |
title_full | Predicting sporadic Alzheimer’s disease progression via inherited Alzheimer’s disease-informed machine-learning |
title_fullStr | Predicting sporadic Alzheimer’s disease progression via inherited Alzheimer’s disease-informed machine-learning |
title_full_unstemmed | Predicting sporadic Alzheimer’s disease progression via inherited Alzheimer’s disease-informed machine-learning |
title_short | Predicting sporadic Alzheimer’s disease progression via inherited Alzheimer’s disease-informed machine-learning |
title_sort | predicting sporadic alzheimer’s disease progression via inherited alzheimer’s disease-informed machine-learning |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7222030/ https://www.ncbi.nlm.nih.gov/pubmed/32043733 http://dx.doi.org/10.1002/alz.12032 |
work_keys_str_mv | AT franzmeiernicolai predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning AT koutsoulerisnikolaos predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning AT benzingertammie predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning AT goatealison predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning AT karchcelestem predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning AT faganannem predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning AT mcdadeeric predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning AT dueringmarco predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning AT dichgansmartin predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning AT levinjohannes predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning AT gordonbriana predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning AT limyenying predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning AT masterscolinl predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning AT rossormartin predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning AT foxnickc predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning AT oconnorantoinette predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning AT chhatwaljasmeer predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning AT sallowaystephen predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning AT danekadrian predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning AT hassenstabjason predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning AT schofieldpeterr predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning AT morrisjohnc predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning AT batemanrandallj predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning AT predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning AT predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning AT ewersmichael predictingsporadicalzheimersdiseaseprogressionviainheritedalzheimersdiseaseinformedmachinelearning |