Cargando…

Outcomes of tranexamic acid administration in military trauma patients with intracranial hemorrhage: a cohort study

BACKGROUND: Tranexamic acid (TXA) may be a useful adjunct for military patients with severe traumatic brain injury (TBI). These patients are often treated in austere settings without immediate access to neurosurgical intervention. The purpose of this study was to evaluate any association between TXA...

Descripción completa

Detalles Bibliográficos
Autores principales: Walker, Patrick F., Bozzay, Joseph D., Johnston, Luke R., Elster, Eric A., Rodriguez, Carlos J., Bradley, Matthew J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7222426/
https://www.ncbi.nlm.nih.gov/pubmed/32410581
http://dx.doi.org/10.1186/s12873-020-00335-w
Descripción
Sumario:BACKGROUND: Tranexamic acid (TXA) may be a useful adjunct for military patients with severe traumatic brain injury (TBI). These patients are often treated in austere settings without immediate access to neurosurgical intervention. The purpose of this study was to evaluate any association between TXA use and progression of intracranial hemorrhage (ICH), neurologic outcomes, and venous thromboembolism (VTE) in TBI. METHODS: This was a retrospective cohort study of military casualties from October 2010 to December 2015 who were transferred to a military treatment facility (MTF) in the United States. Data collected included: demographics, types of injuries, initial and interval head computerized tomography (CT) scans, Glasgow Coma Scores (GCS), and six-month Glasgow Outcome Scores (GOS). Results were stratified based on TXA administration, progression of ICH, and VTE. RESULTS: Of the 687 active duty service members reviewed, 71 patients had ICH (10.3%). Most casualties were injured in a blast (80.3%), with 36 patients (50.7%) sustaining a penetrating TBI. Mean ISS was 28.2 ± 12.3. Nine patients (12.7%) received a massive transfusion within 24 h of injury, and TXA was administered to 14 (19.7%) casualties. Patients that received TXA had lower initial reported GCS (9.2 ± 4.4 vs. 12.5 ± 3.4, p = 0.003), similar discharge GCS (13.3 ± 4.0 vs. 13.8 ± 3.2, p = 0.58), and a larger improvement between initial and discharge GCS (3.7 ± 3.9 vs. 1.3 ± 3.1, p = 0.02). However, there was no difference in mortality (7.1% vs. 7.0%, p = 1.00), progression of ICH (45.5% vs. 14.7%, p = 0.09), frequency of cranial decompression (50.0% vs. 42.1%, p = 0.76), or mean GOS (3.5 ± 0.9 vs. 3.8 ± 1.0, p = 0.13). Patients administered TXA had a higher rate of VTE (35.7% vs. 7.0%, p = 0.01). On multivariate analysis, however, TXA was not independently associated with VTE. CONCLUSIONS: Patients that received TXA were associated with an improvement in GCS but not in progression of ICH or GOS. TXA was not independently associated with VTE, although this may be related to a paucity of patients receiving TXA. Decisions about TXA administration in military casualties with ICH should be considered in the context of the availability of neurosurgical intervention as well as severity of extracranial injuries and need for massive transfusion.