Cargando…
Non-destructive estimation of field maize biomass using terrestrial lidar: an evaluation from plot level to individual leaf level
BACKGROUND: Precision agriculture is an emerging research field that relies on monitoring and managing field variability in phenotypic traits. An important phenotypic trait is biomass, a comprehensive indicator that can reflect crop yields. However, non-destructive biomass estimation at fine levels...
Autores principales: | Jin, Shichao, Su, Yanjun, Song, Shilin, Xu, Kexin, Hu, Tianyu, Yang, Qiuli, Wu, Fangfang, Xu, Guangcai, Ma, Qin, Guan, Hongcan, Pang, Shuxin, Li, Yumei, Guo, Qinghua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7222476/ https://www.ncbi.nlm.nih.gov/pubmed/32435271 http://dx.doi.org/10.1186/s13007-020-00613-5 |
Ejemplares similares
-
Evaluating maize phenotype dynamics under drought stress using terrestrial lidar
por: Su, Yanjun, et al.
Publicado: (2019) -
Deep Learning: Individual Maize Segmentation From Terrestrial Lidar Data Using Faster R-CNN and Regional Growth Algorithms
por: Jin, Shichao, et al.
Publicado: (2018) -
Terrestrial LiDAR-derived non-destructive woody biomass estimates for 10 hardwood species in Virginia
por: Stovall, Atticus E.L., et al.
Publicado: (2018) -
An Algorithm for Fitting Sphere Target of Terrestrial LiDAR
por: Shi, Yintao, et al.
Publicado: (2021) -
Shortwave Radiation Calculation for Forest Plots Using Airborne LiDAR Data and Computer Graphics
por: Xue, Xinbo, et al.
Publicado: (2022)