Cargando…

Bioaugmentation in the surgical treatment of anterior cruciate ligament injuries: A review of current concepts and emerging techniques

Injuries involving the anterior cruciate ligament are among the most common athletic injuries, and are the most common involving the knee. The anterior cruciate ligament is a key translational and rotational stabilizer of the knee joint during pivoting and cutting activities. Traditionally, surgical...

Descripción completa

Detalles Bibliográficos
Autores principales: Looney, Austin MacFarland, Leider, Joseph Daniel, Horn, Andrew Ryan, Bodendorfer, Blake Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7222656/
https://www.ncbi.nlm.nih.gov/pubmed/32435488
http://dx.doi.org/10.1177/2050312120921057
Descripción
Sumario:Injuries involving the anterior cruciate ligament are among the most common athletic injuries, and are the most common involving the knee. The anterior cruciate ligament is a key translational and rotational stabilizer of the knee joint during pivoting and cutting activities. Traditionally, surgical intervention in the form of anterior cruciate ligament reconstruction has been recommended for those who sustain an anterior cruciate ligament rupture and wish to remain active and return to sport. The intra-articular environment of the anterior cruciate ligament makes achieving successful healing following repair challenging. Historically, results following repair were poor, and anterior cruciate ligament reconstruction emerged as the gold-standard for treatment. While earlier literature reported high rates of return to play, the results of more recent studies with longer follow-up have suggested that anterior cruciate ligament reconstruction may not be as successful as once thought: fewer athletes are able to return to sport at their preinjury level, and many still go on to develop osteoarthritis of the knee at a relatively younger age. The four principles of tissue engineering (cells, growth factors, scaffolds, and mechanical stimuli) combined in various methods of bioaugmentation have been increasingly explored in an effort to improve outcomes following surgical treatment of anterior cruciate ligament injuries. Newer technologies have also led to the re-emergence of anterior cruciate ligament repair as an option for select patients. The different biological challenges associated with anterior cruciate ligament repair and reconstruction each present unique opportunities for targeted bioaugmentation strategies that may eventually lead to better outcomes with better return-to-play rates and fewer revisions.