Cargando…
Andronov–Hopf and Neimark–Sacker bifurcations in time-delay differential equations and difference equations with applications to models for diseases and animal populations
In many areas, researchers might think that a differential equation model is required, but one might be forced to use an approximate difference equation model if data is only available at discrete points in time. In this paper, a detailed comparison is given of the behavior of continuous and discret...
Autores principales: | Darlai, Rachadawan, Moore, Elvin J., Koonprasert, Sanoe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7223581/ https://www.ncbi.nlm.nih.gov/pubmed/32435267 http://dx.doi.org/10.1186/s13662-020-02646-5 |
Ejemplares similares
-
Quantum Neimark-Sacker bifurcation
por: Yusipov, I. I., et al.
Publicado: (2019) -
Hybrid control of the Neimark-Sacker bifurcation in a delayed Nicholson’s blowflies equation
por: Wang, Yuanyuan, et al.
Publicado: (2015) -
Neimark-Sacker bifurcation of a two-dimensional discrete-time predator-prey model
por: Khan, A. Q.
Publicado: (2016) -
Modulation of contractions in the small intestine indicate desynchronization via supercritical Andronov–Hopf bifurcation
por: Parsons, Sean P., et al.
Publicado: (2020) -
Hopf Bifurcation of an Epidemic Model with Delay
por: Song, Li-Peng, et al.
Publicado: (2016)