Cargando…
Full-genome sequences of GII.13[P21] recombinant norovirus strains from an outbreak in Changsha, China
On 31 March 2019, 68 school students suffered from vomiting, diarrhea, and abdominal pain after participating in a group activity at a commercial park. In this outbreak, multiple norovirus genotypes were observed, including GII.2[P16], GII.17[P17], and GII.13[P21]. Further, we determined the full-ge...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7223583/ https://www.ncbi.nlm.nih.gov/pubmed/32356188 http://dx.doi.org/10.1007/s00705-020-04643-1 |
Sumario: | On 31 March 2019, 68 school students suffered from vomiting, diarrhea, and abdominal pain after participating in a group activity at a commercial park. In this outbreak, multiple norovirus genotypes were observed, including GII.2[P16], GII.17[P17], and GII.13[P21]. Further, we determined the full-genome sequences of two strains of GII.13[P21] recombinant noroviruses, which were 7434 nt long. Phylogenetic analysis based on open reading frames (ORFs) 1 and 2 revealed that these recombinants were related to stains of different genotypes from different countries. The full genome nucleotide sequences of the two isolates were 97.0% and 98.0% identical to those of strains from London and Thailand, respectively. Simplot analysis revealed the presence of a break point at nt 5059 in the ORF1 region. The histo-blood group antigen binding sites were conserved in both recombinant viruses. Our findings not only provide valuable genetic information about a recombinant norovirus but also contribute to our general understanding of the evolution, genetic diversity, and distribution of noroviruses. |
---|