Cargando…

Mathematical analysis for a new nonlinear measles epidemiological system using real incidence data from Pakistan

Modeling of infectious diseases is essential to comprehend dynamic behavior for the transmission of an epidemic. This research study consists of a newly proposed mathematical system for transmission dynamics of the measles epidemic. The measles system is based upon mass action principle wherein huma...

Descripción completa

Detalles Bibliográficos
Autores principales: Memon, Zaibunnisa, Qureshi, Sania, Memon, Bisharat Rasool
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7223692/
https://www.ncbi.nlm.nih.gov/pubmed/32435550
http://dx.doi.org/10.1140/epjp/s13360-020-00392-x
_version_ 1783533780636532736
author Memon, Zaibunnisa
Qureshi, Sania
Memon, Bisharat Rasool
author_facet Memon, Zaibunnisa
Qureshi, Sania
Memon, Bisharat Rasool
author_sort Memon, Zaibunnisa
collection PubMed
description Modeling of infectious diseases is essential to comprehend dynamic behavior for the transmission of an epidemic. This research study consists of a newly proposed mathematical system for transmission dynamics of the measles epidemic. The measles system is based upon mass action principle wherein human population is divided into five mutually disjoint compartments: susceptible S(t)—vaccinated V(t)—exposed E(t)—infectious I(t)—recovered R(t). Using real measles cases reported from January 2019 to October 2019 in Pakistan, the system has been validated. Two unique equilibria called measles-free and endemic (measles-present) are shown to be locally asymptotically stable for basic reproductive number [Formula: see text] and [Formula: see text] , respectively. While using Lyapunov functions, the equilibria are found to be globally asymptotically stable under the former conditions on [Formula: see text] . However, backward bifurcation shows coexistence of stable endemic equilibrium with a stable measles-free equilibrium for [Formula: see text] . A strategy for measles control based on herd immunity is presented. The forward sensitivity indices for [Formula: see text] are also computed with respect to the estimated and fitted biological parameters. Finally, numerical simulations exhibit dynamical behavior of the measles system under influence of its parameters which further suggest improvement in both the vaccine efficacy and its coverage rate for substantial reduction in the measles epidemic.
format Online
Article
Text
id pubmed-7223692
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-72236922020-05-15 Mathematical analysis for a new nonlinear measles epidemiological system using real incidence data from Pakistan Memon, Zaibunnisa Qureshi, Sania Memon, Bisharat Rasool Eur Phys J Plus Regular Article Modeling of infectious diseases is essential to comprehend dynamic behavior for the transmission of an epidemic. This research study consists of a newly proposed mathematical system for transmission dynamics of the measles epidemic. The measles system is based upon mass action principle wherein human population is divided into five mutually disjoint compartments: susceptible S(t)—vaccinated V(t)—exposed E(t)—infectious I(t)—recovered R(t). Using real measles cases reported from January 2019 to October 2019 in Pakistan, the system has been validated. Two unique equilibria called measles-free and endemic (measles-present) are shown to be locally asymptotically stable for basic reproductive number [Formula: see text] and [Formula: see text] , respectively. While using Lyapunov functions, the equilibria are found to be globally asymptotically stable under the former conditions on [Formula: see text] . However, backward bifurcation shows coexistence of stable endemic equilibrium with a stable measles-free equilibrium for [Formula: see text] . A strategy for measles control based on herd immunity is presented. The forward sensitivity indices for [Formula: see text] are also computed with respect to the estimated and fitted biological parameters. Finally, numerical simulations exhibit dynamical behavior of the measles system under influence of its parameters which further suggest improvement in both the vaccine efficacy and its coverage rate for substantial reduction in the measles epidemic. Springer Berlin Heidelberg 2020-04-28 2020 /pmc/articles/PMC7223692/ /pubmed/32435550 http://dx.doi.org/10.1140/epjp/s13360-020-00392-x Text en © Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2020 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
spellingShingle Regular Article
Memon, Zaibunnisa
Qureshi, Sania
Memon, Bisharat Rasool
Mathematical analysis for a new nonlinear measles epidemiological system using real incidence data from Pakistan
title Mathematical analysis for a new nonlinear measles epidemiological system using real incidence data from Pakistan
title_full Mathematical analysis for a new nonlinear measles epidemiological system using real incidence data from Pakistan
title_fullStr Mathematical analysis for a new nonlinear measles epidemiological system using real incidence data from Pakistan
title_full_unstemmed Mathematical analysis for a new nonlinear measles epidemiological system using real incidence data from Pakistan
title_short Mathematical analysis for a new nonlinear measles epidemiological system using real incidence data from Pakistan
title_sort mathematical analysis for a new nonlinear measles epidemiological system using real incidence data from pakistan
topic Regular Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7223692/
https://www.ncbi.nlm.nih.gov/pubmed/32435550
http://dx.doi.org/10.1140/epjp/s13360-020-00392-x
work_keys_str_mv AT memonzaibunnisa mathematicalanalysisforanewnonlinearmeaslesepidemiologicalsystemusingrealincidencedatafrompakistan
AT qureshisania mathematicalanalysisforanewnonlinearmeaslesepidemiologicalsystemusingrealincidencedatafrompakistan
AT memonbisharatrasool mathematicalanalysisforanewnonlinearmeaslesepidemiologicalsystemusingrealincidencedatafrompakistan