Cargando…

In Silico Modeling of Crimean Congo Hemorrhagic Fever Virus Glycoprotein-N and Screening of Anti Viral Hits by Virtual Screening

Crimean-Congo hemorrhagic fever (CCHF) is a widespread zoonotic viral disease, caused by a tick-born virus Crimean-Congo hemorrhagic fever virus (CCHFV). This disease is endemic in Middle East, Asia, Africa and South-Eastern Europe with the mortality rate of 5–30%. CCHFV genome is composed of three...

Descripción completa

Detalles Bibliográficos
Autores principales: Halim, Sobia Ahsan, Aziz, Sobia, Ilyas, Mohammad, Wadood, Abdul, Khan, Ajmal, Al-Harrasi, Ahmed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7223756/
https://www.ncbi.nlm.nih.gov/pubmed/32421093
http://dx.doi.org/10.1007/s10989-020-10055-1
Descripción
Sumario:Crimean-Congo hemorrhagic fever (CCHF) is a widespread zoonotic viral disease, caused by a tick-born virus Crimean-Congo hemorrhagic fever virus (CCHFV). This disease is endemic in Middle East, Asia, Africa and South-Eastern Europe with the mortality rate of 5–30%. CCHFV genome is composed of three segments: large, medium and small segments. M segment encodes a polyprotein (glycoprotein) so called glycoprotein N (Gn) which is considered as a potential druggable target for the effective therapy of CCHF. The complete structure of Gn is still not characterized. The aim of the current study is to predict the complete three-dimensional (3D-) structure of CCHFV Gn protein via threading-based modeling and investigate the residues crucial for binding with CCHFV envelop. The developed model displayed excellent stereo-chemical and geometrical properties. Subsequently structure based virtual screening (SBVS) was applied to discover novel inhibitors of Gn protein. A library of > 1300 anti-virals was selected from PubChem database and directed to the predicted binding site of Gn. The SBVS results led to the identification of thirty-seven compounds that inhibit the protein in computational analysis. Those 37 hits were subject to pharmacokinetic profiling which demonstrated that 30/37 compound possess safer pharmacokinetic properties. Thus, by specifically targeting Gn, less toxic and more potent inhibitors of CCHFV were identified in silico. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s10989-020-10055-1) contains supplementary material, which is available to authorized users.