Cargando…
Immunogenicity and protective potency of Norovirus GII.17 virus-like particle-based vaccine
OBJECTIVES: Noroviruses (NoVs) are major cause of acute viral gastroenteritis in worldwide, and the lack of a cell culture system that must be considered the virus like particles (VLPs) are used as an effective vaccine development. MATERIALS AND METHODS: In the present study, we investigated the exp...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7223773/ https://www.ncbi.nlm.nih.gov/pubmed/32088791 http://dx.doi.org/10.1007/s10529-020-02837-w |
Sumario: | OBJECTIVES: Noroviruses (NoVs) are major cause of acute viral gastroenteritis in worldwide, and the lack of a cell culture system that must be considered the virus like particles (VLPs) are used as an effective vaccine development. MATERIALS AND METHODS: In the present study, we investigated the expression of the major capsid protein (VP1) of the Genogroup II, genotype 17 (GII.17) NoV, using recombinant baculovirus system in insect cells, as well as a saliva binding blockade assay to detect their protective potency. RESULTS: Our results showed that GII.17 VLPs could be successfully generated in sf9 insect cells, and electron microscopic revealed that GII.17 VLPs appeared as spherical particles with a − 35 nm diameter. Immunized mice with purified VLPs produced GII.17 specific sera and could efficiently block GII.17 VLPs binding to the saliva histo-blood group antigens (HBGAs). CONCLUSIONS: Together, these results suggested that GII.17 VLPs represent a promising vaccine candidate against NoV GII.17 infection and strongly support further preclinical and clinical studies. |
---|