Cargando…
A topology-based network tree for the prediction of protein–protein binding affinity changes following mutation
The ability to predict protein–protein interactions is crucial to our understanding of a wide range of biological activities and functions in the human body, and for guiding drug discovery. Despite considerable efforts to develop suitable computational methods, predicting protein–protein interaction...
Autores principales: | Wang, Menglun, Cang, Zixuan, Wei, Guo-Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7223817/ https://www.ncbi.nlm.nih.gov/pubmed/34170981 http://dx.doi.org/10.1038/s42256-020-0149-6 |
Ejemplares similares
-
TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions
por: Cang, Zixuan, et al.
Publicado: (2017) -
BeAtMuSiC: prediction of changes in protein–protein binding affinity on mutations
por: Dehouck, Yves, et al.
Publicado: (2013) -
Predicting
the Impact of Missense Mutations on Protein–Protein
Binding Affinity
por: Li, Minghui, et al.
Publicado: (2014) -
Relative Binding Affinity Prediction of Charge-Changing Sequence Mutations with FEP in Protein–Protein Interfaces
por: Clark, Anthony J., et al.
Publicado: (2019) -
Neural networks prediction of the protein-ligand binding affinity with circular fingerprints
por: Yin, Zuode, et al.
Publicado: (2023)