Cargando…

Approximate solutions for HBV infection with stability analysis using LHAM during antiviral therapy

Hepatitis B virus (HBV) is a life-threatening virus that causes very serious liver-related diseases from the family of Hepadnaviridae having very rare qualities resembling retroviruses. In this paper, we analyze the effect of antiviral therapy through mathematical modeling by using Liao’s homotopy a...

Descripción completa

Detalles Bibliográficos
Autores principales: Aniji, M., Kavitha, N., Balamuralitharan, S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7223922/
https://www.ncbi.nlm.nih.gov/pubmed/33719357
http://dx.doi.org/10.1186/s13661-020-01373-w
Descripción
Sumario:Hepatitis B virus (HBV) is a life-threatening virus that causes very serious liver-related diseases from the family of Hepadnaviridae having very rare qualities resembling retroviruses. In this paper, we analyze the effect of antiviral therapy through mathematical modeling by using Liao’s homotopy analysis method (LHAM) that defines the connection between the target liver cells and the HBV. We also examine the basic nonlinear differential equation by LHAM to get a semi-analytical solution. This can be a very straight and direct method which provides the appropriate solution. Moreover, the local and global stability analysis of disease-free and endemic equilibrium is done using Lyapunov function. Mathematica 12 software is used to find out the solutions and graphical representations. We also discuss the numerical simulations up to sixth-order approximation and error analysis using the same software.