Cargando…
Generation and evaluation of artificial mental health records for Natural Language Processing
A serious obstacle to the development of Natural Language Processing (NLP) methods in the clinical domain is the accessibility of textual data. The mental health domain is particularly challenging, partly because clinical documentation relies heavily on free text that is difficult to de-identify com...
Autores principales: | Ive, Julia, Viani, Natalia, Kam, Joyce, Yin, Lucia, Verma, Somain, Puntis, Stephen, Cardinal, Rudolf N., Roberts, Angus, Stewart, Robert, Velupillai, Sumithra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7224173/ https://www.ncbi.nlm.nih.gov/pubmed/32435697 http://dx.doi.org/10.1038/s41746-020-0267-x |
Ejemplares similares
-
Temporal information extraction from mental health records to identify duration of untreated psychosis
por: Viani, Natalia, et al.
Publicado: (2020) -
Development of a Corpus Annotated With Mentions of Pain in Mental Health Records: Natural Language Processing Approach
por: Chaturvedi, Jaya, et al.
Publicado: (2023) -
A natural language processing approach for identifying temporal disease onset information from mental healthcare text
por: Viani, Natalia, et al.
Publicado: (2021) -
Identifying perinatal self-harm in electronic healthcare records using natural language processing
por: Ayre, Karyn, et al.
Publicado: (2021) -
Applied natural language processing in mental health big data
por: Stewart, Robert, et al.
Publicado: (2020)