Cargando…

Bioprocess development for L-asparaginase production by Streptomyces rochei, purification and in-vitro efficacy against various human carcinoma cell lines

In the near future, the demand for L-asparaginase is expected to rise several times due to an increase in its clinical and industrial applications in various industrial sectors, such as food processing. Streptomyces sp. strain NEAE-K is potent L-asparaginase producer, isolated and identified as new...

Descripción completa

Detalles Bibliográficos
Autores principales: El-Naggar, Noura El-Ahmady, El-Shweihy, Nancy M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7224186/
https://www.ncbi.nlm.nih.gov/pubmed/32409719
http://dx.doi.org/10.1038/s41598-020-64052-x
Descripción
Sumario:In the near future, the demand for L-asparaginase is expected to rise several times due to an increase in its clinical and industrial applications in various industrial sectors, such as food processing. Streptomyces sp. strain NEAE-K is potent L-asparaginase producer, isolated and identified as new subsp. Streptomyces rochei subsp. chromatogenes NEAE-K and the sequence data has been deposited under accession number KJ200343 at the GenBank database. Sixteen different independent factors were examined for their effects on L-asparaginase production by Streptomyces rochei subsp. chromatogenes NEAE-K under solid state fermentation conditions using Plackett–Burman design. pH, dextrose and yeast extract were the most significant factors affecting L-asparaginase production. Thus, using central composite design, the optimum levels of these variables were determined. L-asparaginase purification was carried out by ammonium sulfate followed by DEAE-Sepharose CL-6B ion exchange column with a final purification fold of 16.18. The monomeric molecular weight of the purified L-asparaginase was 64 kD as determined by SDS-PAGE method. The in vitro effects of L-asparaginase were evaluated on five human tumor cell lines and found to have a strong anti-proliferative effects. The results showed that the strongest cytotoxic effect of L-asparaginase was exerted on the HeLa and HepG-2 cell lines (IC(50) = 2.16 ± 0.2 and 2.54 ± 0.3 U/mL; respectively). In addition, the selectivity index of L-asparaginase against HeLa and HepG-2 cell lines was 3.94 and 3.35; respectively.