Cargando…
3D-MCN: A 3D Multi-scale Capsule Network for Lung Nodule Malignancy Prediction
Despite the advances in automatic lung cancer malignancy prediction, achieving high accuracy remains challenging. Existing solutions are mostly based on Convolutional Neural Networks (CNNs), which require a large amount of training data. Most of the developed CNN models are based only on the main no...
Autores principales: | Afshar, Parnian, Oikonomou, Anastasia, Naderkhani, Farnoosh, Tyrrell, Pascal N., Plataniotis, Konstantinos N., Farahani, Keyvan, Mohammadi, Arash |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7224210/ https://www.ncbi.nlm.nih.gov/pubmed/32409715 http://dx.doi.org/10.1038/s41598-020-64824-5 |
Ejemplares similares
-
COVID-CAPS: A capsule network-based framework for identification of COVID-19 cases from X-ray images
por: Afshar, Parnian, et al.
Publicado: (2020) -
Human-level COVID-19 diagnosis from low-dose CT scans using a two-stage time-distributed capsule network
por: Afshar, Parnian, et al.
Publicado: (2022) -
COVID-rate: an automated framework for segmentation of COVID-19 lesions from chest CT images
por: Enshaei, Nastaran, et al.
Publicado: (2022) -
COVID-FACT: A Fully-Automated Capsule Network-Based Framework for Identification of COVID-19 Cases from Chest CT Scans
por: Heidarian, Shahin, et al.
Publicado: (2021) -
COVID-CT-MD, COVID-19 computed tomography scan dataset applicable in machine learning and deep learning
por: Afshar, Parnian, et al.
Publicado: (2021)