Cargando…

Magnitude and timing of major white matter tract maturation from infancy through adolescence with NODDI

White matter maturation is a nonlinear and heterogeneous phenomenon characterized by axonal packing, increased axon caliber, and a prolonged period of myelination. While current in vivo diffusion MRI (dMRI) methods, like diffusion tensor imaging (DTI), have successfully characterized the gross struc...

Descripción completa

Detalles Bibliográficos
Autores principales: Lynch, Kirsten M., Cabeen, Ryan P., Toga, Arthur W., Clark, Kristi A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7224237/
https://www.ncbi.nlm.nih.gov/pubmed/32092432
http://dx.doi.org/10.1016/j.neuroimage.2020.116672
_version_ 1783533864119959552
author Lynch, Kirsten M.
Cabeen, Ryan P.
Toga, Arthur W.
Clark, Kristi A.
author_facet Lynch, Kirsten M.
Cabeen, Ryan P.
Toga, Arthur W.
Clark, Kristi A.
author_sort Lynch, Kirsten M.
collection PubMed
description White matter maturation is a nonlinear and heterogeneous phenomenon characterized by axonal packing, increased axon caliber, and a prolonged period of myelination. While current in vivo diffusion MRI (dMRI) methods, like diffusion tensor imaging (DTI), have successfully characterized the gross structure of major white matter tracts, these measures lack the specificity required to unravel the distinct processes that contribute to microstructural development. Neurite orientation dispersion and density imaging (NODDI) is a dMRI approach that probes tissue compartments and provides biologically meaningful measures that quantify neurite density index (NDI) and orientation dispersion index (ODI). The purpose of this study was to characterize the magnitude and timing of major white matter tract maturation with NODDI from infancy through adolescence in a cross-sectional cohort of 104 subjects (0.6–18.8 years). To probe the regional nature of white matter development, we use an along-tract approach that partitions tracts to enable more fine-grained analysis. Major white matter tracts showed exponential age-related changes in NDI with distinct maturational patterns. Overall, analyses revealed callosal fibers developed before association fibers. Our along-tract analyses elucidate spatially varying patterns of maturation with NDI that are distinct from those obtained with DTI. ODI was not significantly associated with age in the majority of tracts. Our results support the conclusion that white matter tract maturation is heterochronous process and, furthermore, we demonstrate regional variability in the developmental timing within major white matter tracts. Together, these results help to disentangle the distinct processes that contribute to and more specifically define the time course of white matter maturation.
format Online
Article
Text
id pubmed-7224237
institution National Center for Biotechnology Information
language English
publishDate 2020
record_format MEDLINE/PubMed
spelling pubmed-72242372021-05-15 Magnitude and timing of major white matter tract maturation from infancy through adolescence with NODDI Lynch, Kirsten M. Cabeen, Ryan P. Toga, Arthur W. Clark, Kristi A. Neuroimage Article White matter maturation is a nonlinear and heterogeneous phenomenon characterized by axonal packing, increased axon caliber, and a prolonged period of myelination. While current in vivo diffusion MRI (dMRI) methods, like diffusion tensor imaging (DTI), have successfully characterized the gross structure of major white matter tracts, these measures lack the specificity required to unravel the distinct processes that contribute to microstructural development. Neurite orientation dispersion and density imaging (NODDI) is a dMRI approach that probes tissue compartments and provides biologically meaningful measures that quantify neurite density index (NDI) and orientation dispersion index (ODI). The purpose of this study was to characterize the magnitude and timing of major white matter tract maturation with NODDI from infancy through adolescence in a cross-sectional cohort of 104 subjects (0.6–18.8 years). To probe the regional nature of white matter development, we use an along-tract approach that partitions tracts to enable more fine-grained analysis. Major white matter tracts showed exponential age-related changes in NDI with distinct maturational patterns. Overall, analyses revealed callosal fibers developed before association fibers. Our along-tract analyses elucidate spatially varying patterns of maturation with NDI that are distinct from those obtained with DTI. ODI was not significantly associated with age in the majority of tracts. Our results support the conclusion that white matter tract maturation is heterochronous process and, furthermore, we demonstrate regional variability in the developmental timing within major white matter tracts. Together, these results help to disentangle the distinct processes that contribute to and more specifically define the time course of white matter maturation. 2020-02-21 2020-05-15 /pmc/articles/PMC7224237/ /pubmed/32092432 http://dx.doi.org/10.1016/j.neuroimage.2020.116672 Text en This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Lynch, Kirsten M.
Cabeen, Ryan P.
Toga, Arthur W.
Clark, Kristi A.
Magnitude and timing of major white matter tract maturation from infancy through adolescence with NODDI
title Magnitude and timing of major white matter tract maturation from infancy through adolescence with NODDI
title_full Magnitude and timing of major white matter tract maturation from infancy through adolescence with NODDI
title_fullStr Magnitude and timing of major white matter tract maturation from infancy through adolescence with NODDI
title_full_unstemmed Magnitude and timing of major white matter tract maturation from infancy through adolescence with NODDI
title_short Magnitude and timing of major white matter tract maturation from infancy through adolescence with NODDI
title_sort magnitude and timing of major white matter tract maturation from infancy through adolescence with noddi
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7224237/
https://www.ncbi.nlm.nih.gov/pubmed/32092432
http://dx.doi.org/10.1016/j.neuroimage.2020.116672
work_keys_str_mv AT lynchkirstenm magnitudeandtimingofmajorwhitemattertractmaturationfrominfancythroughadolescencewithnoddi
AT cabeenryanp magnitudeandtimingofmajorwhitemattertractmaturationfrominfancythroughadolescencewithnoddi
AT togaarthurw magnitudeandtimingofmajorwhitemattertractmaturationfrominfancythroughadolescencewithnoddi
AT clarkkristia magnitudeandtimingofmajorwhitemattertractmaturationfrominfancythroughadolescencewithnoddi