Cargando…
An Electrocardiographic System With Anthropometrics via Machine Learning to Screen Left Ventricular Hypertrophy among Young Adults
The prevalence of physiological and pathological left ventricular hypertrophy (LVH) among young adults is about 5%. A use of electrocardiographic (ECG) voltage criteria and machine learning for the ECG parameters to identify the presence of LVH is estimated only 20-30% in the general population. The...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7224269/ https://www.ncbi.nlm.nih.gov/pubmed/32419990 http://dx.doi.org/10.1109/JTEHM.2020.2990073 |
Ejemplares similares
-
Electrocardiographic Criteria for Left Ventricular Hypertrophy in Children
por: Rijnbeek, Peter R., et al.
Publicado: (2008) -
Improvement of electrocardiographic diagnostic accuracy of left ventricular hypertrophy using a Machine Learning approach
por: De la Garza-Salazar, Fernando, et al.
Publicado: (2020) -
Are Electrocardiographic Criteria Reliable for Left Ventricular Hypertrophy Detection in Indian Adults?
por: Kothendaraman, Bhuvaneswari, et al.
Publicado: (2023) -
Improved scoring system for the electrocardiographic diagnosis of left ventricular hypertrophy
por: Braunstein, Eric D, et al.
Publicado: (2019) -
Electrocardiographic Left Ventricular Hypertrophy and Outcome in Hemodialysis Patients
por: Kim, Seung Jun, et al.
Publicado: (2012)