Cargando…
Reconstructing and forecasting the COVID-19 epidemic in the United States using a 5-parameter logistic growth model
BACKGROUND: Many studies have modeled and predicted the spread of COVID-19 (coronavirus disease 2019) in the U.S. using data that begins with the first reported cases. However, the shortage of testing services to detect infected persons makes this approach subject to error due to its underdetection...
Autores principales: | Chen, Ding-Geng, Chen, Xinguang, Chen, Jenny K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7225094/ https://www.ncbi.nlm.nih.gov/pubmed/32435695 http://dx.doi.org/10.1186/s41256-020-00152-5 |
Ejemplares similares
-
Forecasting COVID-19 epidemic in India and high incidence states using SIR and logistic growth models
por: Malavika, B., et al.
Publicado: (2021) -
Forecasting Flu Activity in the United States: Benchmarking an Endemic-Epidemic Beta Model
por: Lu, Junyi, et al.
Publicado: (2020) -
Predicting of the Coronavirus Disease 2019 (COVID-19) Epidemic Using Estimation of Parameters in the Logistic Growth Model
por: Kartono, Agus, et al.
Publicado: (2021) -
The Epidemics of Donations: Logistic Growth and Power-Laws
por: Schweitzer, Frank, et al.
Publicado: (2008) -
Fast Bayesian parameter estimation for stochastic logistic growth models
por: Heydari, Jonathan, et al.
Publicado: (2014)