Cargando…

DNA methylation markers that correlate with occult lymph node metastases of non-small cell lung cancer and a preliminary prediction model

BACKGROUND: Lymph node (LN) metastasis status is the most important prognostic factor and determines treatment strategy. Methylation alteration is an optimal candidate to trace the signal from early stage tumors due to its early existence, multiple loci and stability in blood. We built a diagnostic...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Zisheng, Xiong, Shan, Li, Jianfu, Ou, Limin, Li, Caichen, Tao, Jinsheng, Jiang, Zeyu, Fan, Jianbing, He, Jianxing, Liang, Wenhua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7225136/
https://www.ncbi.nlm.nih.gov/pubmed/32420067
http://dx.doi.org/10.21037/tlcr.2020.03.13
Descripción
Sumario:BACKGROUND: Lymph node (LN) metastasis status is the most important prognostic factor and determines treatment strategy. Methylation alteration is an optimal candidate to trace the signal from early stage tumors due to its early existence, multiple loci and stability in blood. We built a diagnostic tool to screen and identify a set of plasma methylation markers in early stage occult LN metastasis. METHODS: High-throughput targeted methylation sequencing was performed on tissue and matched plasma samples from a cohort of 119 non-small cell lung cancer (NSCLC) patients with a primary lesion of less than 3.0 cm in diameter. The methylation profiles were compared between patients with and without occult LN metastases. We carried out a set of machine-learning analyses on our discovery cohort to evaluate the utility of cell free DNA methylation profiles in early detection of LN metastasis. Two preliminary prognostic models predictive of LN metastasis were built by random forest with differentially methylated markers shared by plasma and tissue samples and markers present either in plasma or tissue samples respectively. The performance of these models was then evaluated using receiver operating characteristic (ROC) statistics derived from ten-fold cross validation repeated ten times. RESULTS: Within this cohort, 27 cases (27/119, 22.7%) were found to have occult LN metastases found by pathological examination. Compared with those without metastases, 878 and 52 genes were differentially methylated in terms of tissue (MTA3, MIR548H4, HIST3H2A, etc.) and plasma (CIRBP, CHGB, FCHO1, etc.) respectively. 19 of these genes (ICAM1, EPH4, COCH, etc.) were overlapped. We selected 22 pairs of cases with or without occult LN metastasis by matching gender, age, smoking history and tumor histology to build and test the plasma model. The AUC of the preliminary prediction model using markers shared by plasma and tissue samples and markers present either in plasma or tissue samples is 88.6% (95% CI, 87.8–89.4%) and 74.9% (95% CI, 72.2–77.6%) respectively. CONCLUSIONS: We identified a set of specific plasma methylation markers for early occult LN metastasis of NSCLC and established a preliminary non-invasive blood diagnostic tool.