Cargando…
A Peptide Link Between Human Cytomegalovirus Infection, Neuronal Migration, and Psychosis
Alongside biological, psychological, and social risk factors, psychotic syndromes may be related to disturbances of neuronal migration. This highly complex process characterizes the developing brain of the fetus, the early postnatal brain, and the adult brain, as reflected by changes within the subv...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7225321/ https://www.ncbi.nlm.nih.gov/pubmed/32457660 http://dx.doi.org/10.3389/fpsyt.2020.00349 |
Sumario: | Alongside biological, psychological, and social risk factors, psychotic syndromes may be related to disturbances of neuronal migration. This highly complex process characterizes the developing brain of the fetus, the early postnatal brain, and the adult brain, as reflected by changes within the subventricular zone and the dentate gyrus of the hippocampus, where neurogenesis persists throughout life. Psychosis also appears to be linked to human cytomegalovirus (HCMV) infection. However, little is known about the connection between psychosis, HCMV infection, and disruption of neuronal migration. The present study addresses the hypothesis that HCMV infection may lead to mental disorders through mechanisms of autoimmune cross-reactivity. Searching for common peptides that underlie immune cross-reactions, the analyses focus on HCMV and human proteins involved in neuronal migration. Results demonstrate a large overlap of viral peptides with human proteins associated with neuronal migration, such as ventral anterior homeobox 1 and cell adhesion molecule 1 implicated in GABAergic and glutamatergic neurotransmission. The present findings support the possibility of immune cross-reactivity between HCMV and human proteins that—when altered, mutated, or improperly functioning—may disrupt normal neuronal migration. In addition, these findings are consistent with a molecular and mechanistic framework for pathological sequences of events, beginning with HCMV infection, followed by immune activation, cross-reactivity, and neuronal protein variations that may ultimately contribute to the emergence of mental disorders, including psychosis. |
---|