Cargando…

Machine Learning for Predictive and Prescriptive Analytics of Operational Data in Smart Manufacturing

Perceiving information and extracting insights from data is one of the major challenges in smart manufacturing. Real-time data analytics face several challenges in real-life scenarios, while there is a huge treasure of legacy, enterprise and operational data remaining untouched. The current paper ex...

Descripción completa

Detalles Bibliográficos
Autores principales: Lepenioti, Katerina, Pertselakis, Minas, Bousdekis, Alexandros, Louca, Andreas, Lampathaki, Fenareti, Apostolou, Dimitris, Mentzas, Gregoris, Anastasiou, Stathis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7225513/
http://dx.doi.org/10.1007/978-3-030-49165-9_1
Descripción
Sumario:Perceiving information and extracting insights from data is one of the major challenges in smart manufacturing. Real-time data analytics face several challenges in real-life scenarios, while there is a huge treasure of legacy, enterprise and operational data remaining untouched. The current paper exploits the recent advancements of (deep) machine learning for performing predictive and prescriptive analytics on the basis of enterprise and operational data aiming at supporting the operator on the shopfloor. To do this, it implements algorithms, such as Recurrent Neural Networks for predictive analytics, and Multi-Objective Reinforcement Learning for prescriptive analytics. The proposed approach is demonstrated in a predictive maintenance scenario in steel industry.