Cargando…
Machine Learning for Predictive and Prescriptive Analytics of Operational Data in Smart Manufacturing
Perceiving information and extracting insights from data is one of the major challenges in smart manufacturing. Real-time data analytics face several challenges in real-life scenarios, while there is a huge treasure of legacy, enterprise and operational data remaining untouched. The current paper ex...
Autores principales: | Lepenioti, Katerina, Pertselakis, Minas, Bousdekis, Alexandros, Louca, Andreas, Lampathaki, Fenareti, Apostolou, Dimitris, Mentzas, Gregoris, Anastasiou, Stathis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7225513/ http://dx.doi.org/10.1007/978-3-030-49165-9_1 |
Ejemplares similares
-
Enterprise Integration and Interoperability for Big Data-Driven Processes in the Frame of Industry 4.0
por: Bousdekis, Alexandros, et al.
Publicado: (2021) -
NEURON: Enabling Autonomicity in Wireless Sensor Networks
por: Zafeiropoulos, Anastasios, et al.
Publicado: (2010) -
Analytics for smart energy management: tools and applications for sustainable manufacturing
por: Oh, Seog-Chan, et al.
Publicado: (2016) -
Insights on next-generation manufacturing of smart devices using text analytics
por: Rajendran, Suchithra, et al.
Publicado: (2020) -
Leveraging machine learning and prescriptive analytics to improve operating room throughput
por: Al Zoubi, Farid, et al.
Publicado: (2023)