Cargando…

Rapid prototyping of microbial production strains for the biomanufacture of potential materials monomers

Bio-based production of industrial chemicals using synthetic biology can provide alternative green routes from renewable resources, allowing for cleaner production processes. To efficiently produce chemicals on-demand through microbial strain engineering, biomanufacturing foundries have developed au...

Descripción completa

Detalles Bibliográficos
Autores principales: Robinson, Christopher J., Carbonell, Pablo, Jervis, Adrian J., Yan, Cunyu, Hollywood, Katherine A., Dunstan, Mark S., Currin, Andrew, Swainston, Neil, Spiess, Reynard, Taylor, Sandra, Mulherin, Paul, Parker, Steven, Rowe, William, Matthews, Nicholas E., Malone, Kirk J., Le Feuvre, Rosalind, Shapira, Philip, Barran, Perdita, Turner, Nicholas J., Micklefield, Jason, Breitling, Rainer, Takano, Eriko, Scrutton, Nigel S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Academic Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7225752/
https://www.ncbi.nlm.nih.gov/pubmed/32335188
http://dx.doi.org/10.1016/j.ymben.2020.04.008
_version_ 1783534132713750528
author Robinson, Christopher J.
Carbonell, Pablo
Jervis, Adrian J.
Yan, Cunyu
Hollywood, Katherine A.
Dunstan, Mark S.
Currin, Andrew
Swainston, Neil
Spiess, Reynard
Taylor, Sandra
Mulherin, Paul
Parker, Steven
Rowe, William
Matthews, Nicholas E.
Malone, Kirk J.
Le Feuvre, Rosalind
Shapira, Philip
Barran, Perdita
Turner, Nicholas J.
Micklefield, Jason
Breitling, Rainer
Takano, Eriko
Scrutton, Nigel S.
author_facet Robinson, Christopher J.
Carbonell, Pablo
Jervis, Adrian J.
Yan, Cunyu
Hollywood, Katherine A.
Dunstan, Mark S.
Currin, Andrew
Swainston, Neil
Spiess, Reynard
Taylor, Sandra
Mulherin, Paul
Parker, Steven
Rowe, William
Matthews, Nicholas E.
Malone, Kirk J.
Le Feuvre, Rosalind
Shapira, Philip
Barran, Perdita
Turner, Nicholas J.
Micklefield, Jason
Breitling, Rainer
Takano, Eriko
Scrutton, Nigel S.
author_sort Robinson, Christopher J.
collection PubMed
description Bio-based production of industrial chemicals using synthetic biology can provide alternative green routes from renewable resources, allowing for cleaner production processes. To efficiently produce chemicals on-demand through microbial strain engineering, biomanufacturing foundries have developed automated pipelines that are largely compound agnostic in their time to delivery. Here we benchmark the capabilities of a biomanufacturing pipeline to enable rapid prototyping of microbial cell factories for the production of chemically diverse industrially relevant material building blocks. Over 85 days the pipeline was able to produce 17 potential material monomers and key intermediates by combining 160 genetic parts into 115 unique biosynthetic pathways. To explore the scale-up potential of our prototype production strains, we optimized the enantioselective production of mandelic acid and hydroxymandelic acid, achieving gram-scale production in fed-batch fermenters. The high success rate in the rapid design and prototyping of microbially-produced material building blocks reveals the potential role of biofoundries in leading the transition to sustainable materials production.
format Online
Article
Text
id pubmed-7225752
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Academic Press
record_format MEDLINE/PubMed
spelling pubmed-72257522020-07-01 Rapid prototyping of microbial production strains for the biomanufacture of potential materials monomers Robinson, Christopher J. Carbonell, Pablo Jervis, Adrian J. Yan, Cunyu Hollywood, Katherine A. Dunstan, Mark S. Currin, Andrew Swainston, Neil Spiess, Reynard Taylor, Sandra Mulherin, Paul Parker, Steven Rowe, William Matthews, Nicholas E. Malone, Kirk J. Le Feuvre, Rosalind Shapira, Philip Barran, Perdita Turner, Nicholas J. Micklefield, Jason Breitling, Rainer Takano, Eriko Scrutton, Nigel S. Metab Eng Article Bio-based production of industrial chemicals using synthetic biology can provide alternative green routes from renewable resources, allowing for cleaner production processes. To efficiently produce chemicals on-demand through microbial strain engineering, biomanufacturing foundries have developed automated pipelines that are largely compound agnostic in their time to delivery. Here we benchmark the capabilities of a biomanufacturing pipeline to enable rapid prototyping of microbial cell factories for the production of chemically diverse industrially relevant material building blocks. Over 85 days the pipeline was able to produce 17 potential material monomers and key intermediates by combining 160 genetic parts into 115 unique biosynthetic pathways. To explore the scale-up potential of our prototype production strains, we optimized the enantioselective production of mandelic acid and hydroxymandelic acid, achieving gram-scale production in fed-batch fermenters. The high success rate in the rapid design and prototyping of microbially-produced material building blocks reveals the potential role of biofoundries in leading the transition to sustainable materials production. Academic Press 2020-07 /pmc/articles/PMC7225752/ /pubmed/32335188 http://dx.doi.org/10.1016/j.ymben.2020.04.008 Text en © 2020 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Robinson, Christopher J.
Carbonell, Pablo
Jervis, Adrian J.
Yan, Cunyu
Hollywood, Katherine A.
Dunstan, Mark S.
Currin, Andrew
Swainston, Neil
Spiess, Reynard
Taylor, Sandra
Mulherin, Paul
Parker, Steven
Rowe, William
Matthews, Nicholas E.
Malone, Kirk J.
Le Feuvre, Rosalind
Shapira, Philip
Barran, Perdita
Turner, Nicholas J.
Micklefield, Jason
Breitling, Rainer
Takano, Eriko
Scrutton, Nigel S.
Rapid prototyping of microbial production strains for the biomanufacture of potential materials monomers
title Rapid prototyping of microbial production strains for the biomanufacture of potential materials monomers
title_full Rapid prototyping of microbial production strains for the biomanufacture of potential materials monomers
title_fullStr Rapid prototyping of microbial production strains for the biomanufacture of potential materials monomers
title_full_unstemmed Rapid prototyping of microbial production strains for the biomanufacture of potential materials monomers
title_short Rapid prototyping of microbial production strains for the biomanufacture of potential materials monomers
title_sort rapid prototyping of microbial production strains for the biomanufacture of potential materials monomers
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7225752/
https://www.ncbi.nlm.nih.gov/pubmed/32335188
http://dx.doi.org/10.1016/j.ymben.2020.04.008
work_keys_str_mv AT robinsonchristopherj rapidprototypingofmicrobialproductionstrainsforthebiomanufactureofpotentialmaterialsmonomers
AT carbonellpablo rapidprototypingofmicrobialproductionstrainsforthebiomanufactureofpotentialmaterialsmonomers
AT jervisadrianj rapidprototypingofmicrobialproductionstrainsforthebiomanufactureofpotentialmaterialsmonomers
AT yancunyu rapidprototypingofmicrobialproductionstrainsforthebiomanufactureofpotentialmaterialsmonomers
AT hollywoodkatherinea rapidprototypingofmicrobialproductionstrainsforthebiomanufactureofpotentialmaterialsmonomers
AT dunstanmarks rapidprototypingofmicrobialproductionstrainsforthebiomanufactureofpotentialmaterialsmonomers
AT currinandrew rapidprototypingofmicrobialproductionstrainsforthebiomanufactureofpotentialmaterialsmonomers
AT swainstonneil rapidprototypingofmicrobialproductionstrainsforthebiomanufactureofpotentialmaterialsmonomers
AT spiessreynard rapidprototypingofmicrobialproductionstrainsforthebiomanufactureofpotentialmaterialsmonomers
AT taylorsandra rapidprototypingofmicrobialproductionstrainsforthebiomanufactureofpotentialmaterialsmonomers
AT mulherinpaul rapidprototypingofmicrobialproductionstrainsforthebiomanufactureofpotentialmaterialsmonomers
AT parkersteven rapidprototypingofmicrobialproductionstrainsforthebiomanufactureofpotentialmaterialsmonomers
AT rowewilliam rapidprototypingofmicrobialproductionstrainsforthebiomanufactureofpotentialmaterialsmonomers
AT matthewsnicholase rapidprototypingofmicrobialproductionstrainsforthebiomanufactureofpotentialmaterialsmonomers
AT malonekirkj rapidprototypingofmicrobialproductionstrainsforthebiomanufactureofpotentialmaterialsmonomers
AT lefeuvrerosalind rapidprototypingofmicrobialproductionstrainsforthebiomanufactureofpotentialmaterialsmonomers
AT shapiraphilip rapidprototypingofmicrobialproductionstrainsforthebiomanufactureofpotentialmaterialsmonomers
AT barranperdita rapidprototypingofmicrobialproductionstrainsforthebiomanufactureofpotentialmaterialsmonomers
AT turnernicholasj rapidprototypingofmicrobialproductionstrainsforthebiomanufactureofpotentialmaterialsmonomers
AT micklefieldjason rapidprototypingofmicrobialproductionstrainsforthebiomanufactureofpotentialmaterialsmonomers
AT breitlingrainer rapidprototypingofmicrobialproductionstrainsforthebiomanufactureofpotentialmaterialsmonomers
AT takanoeriko rapidprototypingofmicrobialproductionstrainsforthebiomanufactureofpotentialmaterialsmonomers
AT scruttonnigels rapidprototypingofmicrobialproductionstrainsforthebiomanufactureofpotentialmaterialsmonomers