Cargando…
A multiple genomic data fused SF2 prediction model, signature identification, and gene regulatory network inference for personalized radiotherapy
Radiotherapy is one of the most important cancer treatments, but its response varies greatly among individual patients. Therefore, the prediction of radiosensitivity, identification of potential signature genes, and inference of their regulatory networks are important for clinical and oncological re...
Autores principales: | He, Qi-en, Tong, Yi-fan, Ye, Zhou, Gao, Li-xia, Zhang, Yi-zhi, Wang, Ling, Song, Kai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7225787/ https://www.ncbi.nlm.nih.gov/pubmed/32329416 http://dx.doi.org/10.1177/1533033820909112 |
Ejemplares similares
-
Epigenome-Wide Tobacco-Related Methylation Signature Identification and Their Multilevel Regulatory Network Inference for Lung Adenocarcinoma
por: Dong, Yan-Mei, et al.
Publicado: (2020) -
Gene regulatory network inference using fused LASSO on multiple data sets
por: Omranian, Nooshin, et al.
Publicado: (2016) -
Fused Regression for Multi-source Gene Regulatory Network Inference
por: Lam, Kari Y., et al.
Publicado: (2016) -
PFBNet: a priori-fused boosting method for gene regulatory network inference
por: Che, Dandan, et al.
Publicado: (2020) -
Fusing gene expressions and transitive protein-protein interactions for inference of gene regulatory networks
por: Liu, Wenting, et al.
Publicado: (2019)