Cargando…
Machine Learning Models for the Prediction of Postpartum Depression: Application and Comparison Based on a Cohort Study
BACKGROUND: Postpartum depression (PPD) is a serious public health problem. Building a predictive model for PPD using data during pregnancy can facilitate earlier identification and intervention. OBJECTIVE: The aims of this study are to compare the effects of four different machine learning models u...
Autores principales: | Zhang, Weina, Liu, Han, Silenzio, Vincent Michael Bernard, Qiu, Peiyuan, Gong, Wenjie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7226048/ https://www.ncbi.nlm.nih.gov/pubmed/32352387 http://dx.doi.org/10.2196/15516 |
Ejemplares similares
-
Machine Learning-Based Predictive Modeling of Postpartum Depression
por: Shin, Dayeon, et al.
Publicado: (2020) -
The Relationship Between Images Posted by New Mothers on WeChat Moments and Postpartum Depression: Cohort Study
por: Zhang, Weina, et al.
Publicado: (2020) -
Predicting women with depressive symptoms postpartum with machine learning methods
por: Andersson, Sam, et al.
Publicado: (2021) -
Machine Learning Methods for Predicting Postpartum Depression: Scoping Review
por: Saqib, Kiran, et al.
Publicado: (2021) -
Machine learning approach for the prediction of postpartum hemorrhage in vaginal birth
por: Akazawa, Munetoshi, et al.
Publicado: (2021)