Cargando…

TrkB-Induced Inhibition of R-SMAD/SMAD4 Activation is Essential for TGF-β-Mediated Tumor Suppressor Activity

TrkB-mediated activation of the IL6/JAK2/STAT3 signaling pathway is associated with the induction of the epithelial–mesenchymal transition (EMT) program and the acquisition of metastatic potential by tumors. Conversely, the transforming of growth factor-β (TGF-β) is implicated in tumor suppression t...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Min Soo, Jin, Wook
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7226331/
https://www.ncbi.nlm.nih.gov/pubmed/32340410
http://dx.doi.org/10.3390/cancers12041048
Descripción
Sumario:TrkB-mediated activation of the IL6/JAK2/STAT3 signaling pathway is associated with the induction of the epithelial–mesenchymal transition (EMT) program and the acquisition of metastatic potential by tumors. Conversely, the transforming of growth factor-β (TGF-β) is implicated in tumor suppression through the canonical SMAD-dependent signaling pathway. Hence, TrkB could play a role in disrupting the potent TGF-β-mediated growth inhibition, a concept that has not been fully explored. Here, we identified TrkB to be a crucial regulator of the TGF-β signaling pathway as it inhibits the TGF-β-mediated tumor suppression and the activation of TrkB kinase. We further show that the interactions between TrkB and SMADs inhibit TGF-β-mediated R-SMAD/SMAD4 complex formation and suppress TGF-β-induced nuclear translocation and target gene expression. Additionally, the knockdown of TrkB restored the tumor inhibitory activity of TGF-β signaling. These observations suggest that interactions between TrkB and SMADs are critical for the inhibition of TGF-β tumor suppressor activity in cancer cells.