Cargando…

The Role of Branch Cell Symmetry and Other Critical Nanoscale Design Parameters in the Determination of Dendrimer Encapsulation Properties

This article reviews progress over the past three decades related to the role of dendrimer-based, branch cell symmetry in the development of advanced drug delivery systems, aqueous based compatibilizers/solubilizers/excipients and nano-metal cluster catalysts. Historically, it begins with early unre...

Descripción completa

Detalles Bibliográficos
Autores principales: Tomalia, Donald A., Nixon, Linda S., Hedstrand, David M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7226492/
https://www.ncbi.nlm.nih.gov/pubmed/32326311
http://dx.doi.org/10.3390/biom10040642
_version_ 1783534300864446464
author Tomalia, Donald A.
Nixon, Linda S.
Hedstrand, David M.
author_facet Tomalia, Donald A.
Nixon, Linda S.
Hedstrand, David M.
author_sort Tomalia, Donald A.
collection PubMed
description This article reviews progress over the past three decades related to the role of dendrimer-based, branch cell symmetry in the development of advanced drug delivery systems, aqueous based compatibilizers/solubilizers/excipients and nano-metal cluster catalysts. Historically, it begins with early unreported work by the Tomalia Group (i.e., The Dow Chemical Co.) revealing that all known dendrimer family types may be divided into two major symmetry categories; namely: Category I: symmetrical branch cell dendrimers (e.g., Tomalia, Vögtle, Newkome-type dendrimers) possessing interior hollowness/porosity and Category II: asymmetrical branch cell dendrimers (e.g., Denkewalter-type) possessing no interior void space. These two branch cell symmetry features were shown to be pivotal in directing internal packing modes; thereby, differentiating key dendrimer properties such as densities, refractive indices and interior porosities. Furthermore, this discovery provided an explanation for unimolecular micelle encapsulation (UME) behavior observed exclusively for Category I, but not for Category II. This account surveys early experiments confirming the inextricable influence of dendrimer branch cell symmetry on interior packing properties, first examples of Category (I) based UME behavior, nuclear magnetic resonance (NMR) protocols for systematic encapsulation characterization, application of these principles to the solubilization of active approved drugs, engineering dendrimer critical nanoscale design parameters (CNDPs) for optimized properties and concluding with high optimism for the anticipated role of dendrimer-based solubilization principles in emerging new life science, drug delivery and nanomedical applications.
format Online
Article
Text
id pubmed-7226492
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-72264922020-05-18 The Role of Branch Cell Symmetry and Other Critical Nanoscale Design Parameters in the Determination of Dendrimer Encapsulation Properties Tomalia, Donald A. Nixon, Linda S. Hedstrand, David M. Biomolecules Review This article reviews progress over the past three decades related to the role of dendrimer-based, branch cell symmetry in the development of advanced drug delivery systems, aqueous based compatibilizers/solubilizers/excipients and nano-metal cluster catalysts. Historically, it begins with early unreported work by the Tomalia Group (i.e., The Dow Chemical Co.) revealing that all known dendrimer family types may be divided into two major symmetry categories; namely: Category I: symmetrical branch cell dendrimers (e.g., Tomalia, Vögtle, Newkome-type dendrimers) possessing interior hollowness/porosity and Category II: asymmetrical branch cell dendrimers (e.g., Denkewalter-type) possessing no interior void space. These two branch cell symmetry features were shown to be pivotal in directing internal packing modes; thereby, differentiating key dendrimer properties such as densities, refractive indices and interior porosities. Furthermore, this discovery provided an explanation for unimolecular micelle encapsulation (UME) behavior observed exclusively for Category I, but not for Category II. This account surveys early experiments confirming the inextricable influence of dendrimer branch cell symmetry on interior packing properties, first examples of Category (I) based UME behavior, nuclear magnetic resonance (NMR) protocols for systematic encapsulation characterization, application of these principles to the solubilization of active approved drugs, engineering dendrimer critical nanoscale design parameters (CNDPs) for optimized properties and concluding with high optimism for the anticipated role of dendrimer-based solubilization principles in emerging new life science, drug delivery and nanomedical applications. MDPI 2020-04-21 /pmc/articles/PMC7226492/ /pubmed/32326311 http://dx.doi.org/10.3390/biom10040642 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Tomalia, Donald A.
Nixon, Linda S.
Hedstrand, David M.
The Role of Branch Cell Symmetry and Other Critical Nanoscale Design Parameters in the Determination of Dendrimer Encapsulation Properties
title The Role of Branch Cell Symmetry and Other Critical Nanoscale Design Parameters in the Determination of Dendrimer Encapsulation Properties
title_full The Role of Branch Cell Symmetry and Other Critical Nanoscale Design Parameters in the Determination of Dendrimer Encapsulation Properties
title_fullStr The Role of Branch Cell Symmetry and Other Critical Nanoscale Design Parameters in the Determination of Dendrimer Encapsulation Properties
title_full_unstemmed The Role of Branch Cell Symmetry and Other Critical Nanoscale Design Parameters in the Determination of Dendrimer Encapsulation Properties
title_short The Role of Branch Cell Symmetry and Other Critical Nanoscale Design Parameters in the Determination of Dendrimer Encapsulation Properties
title_sort role of branch cell symmetry and other critical nanoscale design parameters in the determination of dendrimer encapsulation properties
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7226492/
https://www.ncbi.nlm.nih.gov/pubmed/32326311
http://dx.doi.org/10.3390/biom10040642
work_keys_str_mv AT tomaliadonalda theroleofbranchcellsymmetryandothercriticalnanoscaledesignparametersinthedeterminationofdendrimerencapsulationproperties
AT nixonlindas theroleofbranchcellsymmetryandothercriticalnanoscaledesignparametersinthedeterminationofdendrimerencapsulationproperties
AT hedstranddavidm theroleofbranchcellsymmetryandothercriticalnanoscaledesignparametersinthedeterminationofdendrimerencapsulationproperties
AT tomaliadonalda roleofbranchcellsymmetryandothercriticalnanoscaledesignparametersinthedeterminationofdendrimerencapsulationproperties
AT nixonlindas roleofbranchcellsymmetryandothercriticalnanoscaledesignparametersinthedeterminationofdendrimerencapsulationproperties
AT hedstranddavidm roleofbranchcellsymmetryandothercriticalnanoscaledesignparametersinthedeterminationofdendrimerencapsulationproperties