Cargando…
Radiomics-Based Outcome Prediction for Pancreatic Cancer Following Stereotactic Body Radiotherapy
(1) Background: Radiomics use high-throughput mining of medical imaging data to extract unique information and predict tumor behavior. Currently available clinical prediction models poorly predict treatment outcomes in pancreatic adenocarcinoma. Therefore, we used radiomic features of primary pancre...
Autores principales: | Parr, Elsa, Du, Qian, Zhang, Chi, Lin, Chi, Kamal, Ahsan, McAlister, Josiah, Liang, Xiaoying, Bavitz, Kyle, Rux, Gerard, Hollingsworth, Michael, Baine, Michael, Zheng, Dandan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7226523/ https://www.ncbi.nlm.nih.gov/pubmed/32344538 http://dx.doi.org/10.3390/cancers12041051 |
Ejemplares similares
-
Radiomic feature stability across 4D respiratory phases and its impact on lung tumor prognosis prediction
por: Du, Qian, et al.
Publicado: (2019) -
The Potential Use of Radiomics with Pre-Radiation Therapy MR Imaging in Predicting Risk of Pseudoprogression in Glioblastoma Patients
por: Baine, Michael, et al.
Publicado: (2021) -
Using Quantitative Imaging for Personalized Medicine in Pancreatic Cancer: A Review of Radiomics and Deep Learning Applications
por: Preuss, Kiersten, et al.
Publicado: (2022) -
Effects of interobserver and interdisciplinary segmentation variabilities on CT-based radiomics for pancreatic cancer
por: Wong, Jeffrey, et al.
Publicado: (2021) -
Correlation of dosimetric factors with the development of symptomatic radiation pneumonitis in stereotactic body radiotherapy
por: Ryckman, Jeffrey M., et al.
Publicado: (2020)