Cargando…

Uncoupling protein-2 regulates M1 macrophage infiltration of gingiva with periodontitis

Periodontitis is an inflammatory disease accompanied by alveolar bone loss. Moreover, M1 macrophages play a critical role in the development of periodontal disease. Uncoupling protein-2 (UCP2) is a mitochondrial transporter protein that controls M1 macrophage activation by modulating reactive oxygen...

Descripción completa

Detalles Bibliográficos
Autores principales: YAN, XIAODONG, YUAN, ZHIYAO, BIAN, YIFENG, JIN, LEI, MAO, ZHAO, LEI, JIANG, CHEN, NING
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Termedia Publishing House 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7226558/
https://www.ncbi.nlm.nih.gov/pubmed/32425675
http://dx.doi.org/10.5114/ceji.2020.94664
Descripción
Sumario:Periodontitis is an inflammatory disease accompanied by alveolar bone loss. Moreover, M1 macrophages play a critical role in the development of periodontal disease. Uncoupling protein-2 (UCP2) is a mitochondrial transporter protein that controls M1 macrophage activation by modulating reactive oxygen species (ROS) production. We investigated the role of UCP2 in M1 macrophage infiltration in gingival tissues with periodontitis. We found that the expression of UCP2 was upregulated in M1 macrophages infiltrating human periodontal tissues with periodontitis. Macrophage-specific knockout of UCP2 could increase the infiltration of macrophage and exacerbate inflammatory response in a mouse gingiva affected with periodontitis, induced by Porphyromonas gingivalis-LPS (Pg-LPS) injection. The loss of UCP2 may contribute to the enhanced abilities of proliferation, migration, pro-inflammatory cytokine secretion, and ROS production in Pg-LPS-treated macrophages. Our results indicate that UCP2 has an important role in M1 macrophage polarization in the periodontal tissue with periodontitis. It might be helpful to provide theoretical basis for design of new therapeutic strategies for periodontitis.