Cargando…

Submicrometer-Sized Roughness Suppresses Bacteria Adhesion

[Image: see text] Biofilm formation is most commonly combatted with antibiotics or biocides. However, proven toxicity and increasing resistance of bacteria increase the need for alternative strategies to prevent adhesion of bacteria to surfaces. Chemical modification of the surfaces by tethering of...

Descripción completa

Detalles Bibliográficos
Autores principales: Encinas, Noemí, Yang, Ching-Yu, Geyer, Florian, Kaltbeitzel, Anke, Baumli, Philipp, Reinholz, Jonas, Mailänder, Volker, Butt, Hans-Jürgen, Vollmer, Doris
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7226781/
https://www.ncbi.nlm.nih.gov/pubmed/32142252
http://dx.doi.org/10.1021/acsami.9b22621
_version_ 1783534360458166272
author Encinas, Noemí
Yang, Ching-Yu
Geyer, Florian
Kaltbeitzel, Anke
Baumli, Philipp
Reinholz, Jonas
Mailänder, Volker
Butt, Hans-Jürgen
Vollmer, Doris
author_facet Encinas, Noemí
Yang, Ching-Yu
Geyer, Florian
Kaltbeitzel, Anke
Baumli, Philipp
Reinholz, Jonas
Mailänder, Volker
Butt, Hans-Jürgen
Vollmer, Doris
author_sort Encinas, Noemí
collection PubMed
description [Image: see text] Biofilm formation is most commonly combatted with antibiotics or biocides. However, proven toxicity and increasing resistance of bacteria increase the need for alternative strategies to prevent adhesion of bacteria to surfaces. Chemical modification of the surfaces by tethering of functional polymer brushes or films provides a route toward antifouling coatings. Furthermore, nanorough or superhydrophobic surfaces can delay biofilm formation. Here we show that submicrometer-sized roughness can outweigh surface chemistry by testing the adhesion of E. coli to surfaces of different topography and wettability over long exposure times (>7 days). Gram-negative and positive bacterial strains are tested for comparison. We show that an irregular three-dimensional layer of silicone nanofilaments suppresses bacterial adhesion, both in the presence and absence of an air cushion. We hypothesize that a 3D topography can delay biofilm formation (i) if bacteria do not fit into the pores of the coating or (ii) if bending of the bacteria is required to adhere. Thus, such a 3D topography offers an underestimated possibility to design antibacterial surfaces that do not require biocides or antibiotics.
format Online
Article
Text
id pubmed-7226781
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-72267812020-05-18 Submicrometer-Sized Roughness Suppresses Bacteria Adhesion Encinas, Noemí Yang, Ching-Yu Geyer, Florian Kaltbeitzel, Anke Baumli, Philipp Reinholz, Jonas Mailänder, Volker Butt, Hans-Jürgen Vollmer, Doris ACS Appl Mater Interfaces [Image: see text] Biofilm formation is most commonly combatted with antibiotics or biocides. However, proven toxicity and increasing resistance of bacteria increase the need for alternative strategies to prevent adhesion of bacteria to surfaces. Chemical modification of the surfaces by tethering of functional polymer brushes or films provides a route toward antifouling coatings. Furthermore, nanorough or superhydrophobic surfaces can delay biofilm formation. Here we show that submicrometer-sized roughness can outweigh surface chemistry by testing the adhesion of E. coli to surfaces of different topography and wettability over long exposure times (>7 days). Gram-negative and positive bacterial strains are tested for comparison. We show that an irregular three-dimensional layer of silicone nanofilaments suppresses bacterial adhesion, both in the presence and absence of an air cushion. We hypothesize that a 3D topography can delay biofilm formation (i) if bacteria do not fit into the pores of the coating or (ii) if bending of the bacteria is required to adhere. Thus, such a 3D topography offers an underestimated possibility to design antibacterial surfaces that do not require biocides or antibiotics. American Chemical Society 2020-03-06 2020-05-13 /pmc/articles/PMC7226781/ /pubmed/32142252 http://dx.doi.org/10.1021/acsami.9b22621 Text en Copyright © 2020 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Encinas, Noemí
Yang, Ching-Yu
Geyer, Florian
Kaltbeitzel, Anke
Baumli, Philipp
Reinholz, Jonas
Mailänder, Volker
Butt, Hans-Jürgen
Vollmer, Doris
Submicrometer-Sized Roughness Suppresses Bacteria Adhesion
title Submicrometer-Sized Roughness Suppresses Bacteria Adhesion
title_full Submicrometer-Sized Roughness Suppresses Bacteria Adhesion
title_fullStr Submicrometer-Sized Roughness Suppresses Bacteria Adhesion
title_full_unstemmed Submicrometer-Sized Roughness Suppresses Bacteria Adhesion
title_short Submicrometer-Sized Roughness Suppresses Bacteria Adhesion
title_sort submicrometer-sized roughness suppresses bacteria adhesion
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7226781/
https://www.ncbi.nlm.nih.gov/pubmed/32142252
http://dx.doi.org/10.1021/acsami.9b22621
work_keys_str_mv AT encinasnoemi submicrometersizedroughnesssuppressesbacteriaadhesion
AT yangchingyu submicrometersizedroughnesssuppressesbacteriaadhesion
AT geyerflorian submicrometersizedroughnesssuppressesbacteriaadhesion
AT kaltbeitzelanke submicrometersizedroughnesssuppressesbacteriaadhesion
AT baumliphilipp submicrometersizedroughnesssuppressesbacteriaadhesion
AT reinholzjonas submicrometersizedroughnesssuppressesbacteriaadhesion
AT mailandervolker submicrometersizedroughnesssuppressesbacteriaadhesion
AT butthansjurgen submicrometersizedroughnesssuppressesbacteriaadhesion
AT vollmerdoris submicrometersizedroughnesssuppressesbacteriaadhesion