Cargando…
Redox Modifications of Proteins of the Mitochondrial Fusion and Fission Machinery
Mitochondrial fusion and fission tailors the mitochondrial shape to changes in cellular homeostasis. Players of this process are the mitofusins, which regulate fusion of the outer mitochondrial membrane, and the fission protein DRP1. Upon specific stimuli, DRP1 translocates to the mitochondria, wher...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7226787/ https://www.ncbi.nlm.nih.gov/pubmed/32230997 http://dx.doi.org/10.3390/cells9040815 |
_version_ | 1783534361901006848 |
---|---|
author | Wolf, Christina López del Amo, Víctor Arndt, Sabine Bueno, Diones Tenzer, Stefan Hanschmann, Eva-Maria Berndt, Carsten Methner, Axel |
author_facet | Wolf, Christina López del Amo, Víctor Arndt, Sabine Bueno, Diones Tenzer, Stefan Hanschmann, Eva-Maria Berndt, Carsten Methner, Axel |
author_sort | Wolf, Christina |
collection | PubMed |
description | Mitochondrial fusion and fission tailors the mitochondrial shape to changes in cellular homeostasis. Players of this process are the mitofusins, which regulate fusion of the outer mitochondrial membrane, and the fission protein DRP1. Upon specific stimuli, DRP1 translocates to the mitochondria, where it interacts with its receptors FIS1, MFF, and MID49/51. Another fission factor of clinical relevance is GDAP1. Here, we identify and discuss cysteine residues of these proteins that are conserved in phylogenetically distant organisms and which represent potential sites of posttranslational redox modifications. We reveal that worms and flies possess only a single mitofusin, which in vertebrates diverged into MFN1 and MFN2. All mitofusins contain four conserved cysteines in addition to cysteine 684 in MFN2, a site involved in mitochondrial hyperfusion. DRP1 and FIS1 are also evolutionarily conserved but only DRP1 contains four conserved cysteine residues besides cysteine 644, a specific site of nitrosylation. MFF and MID49/51 are only present in the vertebrate lineage. GDAP1 is missing in the nematode genome and contains no conserved cysteine residues. Our analysis suggests that the function of the evolutionarily oldest proteins of the mitochondrial fusion and fission machinery, the mitofusins and DRP1 but not FIS1, might be altered by redox modifications. |
format | Online Article Text |
id | pubmed-7226787 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-72267872020-05-18 Redox Modifications of Proteins of the Mitochondrial Fusion and Fission Machinery Wolf, Christina López del Amo, Víctor Arndt, Sabine Bueno, Diones Tenzer, Stefan Hanschmann, Eva-Maria Berndt, Carsten Methner, Axel Cells Review Mitochondrial fusion and fission tailors the mitochondrial shape to changes in cellular homeostasis. Players of this process are the mitofusins, which regulate fusion of the outer mitochondrial membrane, and the fission protein DRP1. Upon specific stimuli, DRP1 translocates to the mitochondria, where it interacts with its receptors FIS1, MFF, and MID49/51. Another fission factor of clinical relevance is GDAP1. Here, we identify and discuss cysteine residues of these proteins that are conserved in phylogenetically distant organisms and which represent potential sites of posttranslational redox modifications. We reveal that worms and flies possess only a single mitofusin, which in vertebrates diverged into MFN1 and MFN2. All mitofusins contain four conserved cysteines in addition to cysteine 684 in MFN2, a site involved in mitochondrial hyperfusion. DRP1 and FIS1 are also evolutionarily conserved but only DRP1 contains four conserved cysteine residues besides cysteine 644, a specific site of nitrosylation. MFF and MID49/51 are only present in the vertebrate lineage. GDAP1 is missing in the nematode genome and contains no conserved cysteine residues. Our analysis suggests that the function of the evolutionarily oldest proteins of the mitochondrial fusion and fission machinery, the mitofusins and DRP1 but not FIS1, might be altered by redox modifications. MDPI 2020-03-27 /pmc/articles/PMC7226787/ /pubmed/32230997 http://dx.doi.org/10.3390/cells9040815 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Wolf, Christina López del Amo, Víctor Arndt, Sabine Bueno, Diones Tenzer, Stefan Hanschmann, Eva-Maria Berndt, Carsten Methner, Axel Redox Modifications of Proteins of the Mitochondrial Fusion and Fission Machinery |
title | Redox Modifications of Proteins of the Mitochondrial Fusion and Fission Machinery |
title_full | Redox Modifications of Proteins of the Mitochondrial Fusion and Fission Machinery |
title_fullStr | Redox Modifications of Proteins of the Mitochondrial Fusion and Fission Machinery |
title_full_unstemmed | Redox Modifications of Proteins of the Mitochondrial Fusion and Fission Machinery |
title_short | Redox Modifications of Proteins of the Mitochondrial Fusion and Fission Machinery |
title_sort | redox modifications of proteins of the mitochondrial fusion and fission machinery |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7226787/ https://www.ncbi.nlm.nih.gov/pubmed/32230997 http://dx.doi.org/10.3390/cells9040815 |
work_keys_str_mv | AT wolfchristina redoxmodificationsofproteinsofthemitochondrialfusionandfissionmachinery AT lopezdelamovictor redoxmodificationsofproteinsofthemitochondrialfusionandfissionmachinery AT arndtsabine redoxmodificationsofproteinsofthemitochondrialfusionandfissionmachinery AT buenodiones redoxmodificationsofproteinsofthemitochondrialfusionandfissionmachinery AT tenzerstefan redoxmodificationsofproteinsofthemitochondrialfusionandfissionmachinery AT hanschmannevamaria redoxmodificationsofproteinsofthemitochondrialfusionandfissionmachinery AT berndtcarsten redoxmodificationsofproteinsofthemitochondrialfusionandfissionmachinery AT methneraxel redoxmodificationsofproteinsofthemitochondrialfusionandfissionmachinery |