Cargando…
Fabrication of Silver Nanowire/Polydimethylsiloxane Dry Electrodes by a Vacuum Filtration Method for Electrophysiological Signal Monitoring
[Image: see text] Flexible and dry electrodes have attracted huge attention due to their potential application in long-term electrophysiological signal monitoring. In this work, we present a novel method to pattern silver nanowires (AgNWs) on a polydimethylsiloxane (PDMS) substrate-based dry electro...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7226850/ https://www.ncbi.nlm.nih.gov/pubmed/32426582 http://dx.doi.org/10.1021/acsomega.9b03678 |
Sumario: | [Image: see text] Flexible and dry electrodes have attracted huge attention due to their potential application in long-term electrophysiological signal monitoring. In this work, we present a novel method to pattern silver nanowires (AgNWs) on a polydimethylsiloxane (PDMS) substrate-based dry electrodes by a vacuum filtration method for electrophysiological signal monitoring. The Scotch tape peel-off test confirms the excellent adhesion of the patterned AgNWs on a PDMS substrate. The cytotoxicity of the proposed electrode is detected by an MTT assay method, and 90% cell viability is observed for the period of one week, indicating no cytotoxic effect on living cells. The signal to noise ratios of the conventional wet Ag/AgCl and dry AgNW/PDMS electrodes are 24.6 and 25.4 dB, indicating that AgNW/PDMS dry electrodes measure a high-quality electrophysiological signal when compared with that of the conventional Ag/AgCl wet electrodes. |
---|