Cargando…
Overexpression of an endogenous type 2 diacylglycerol acyltransferase in the marine diatom Phaeodactylum tricornutum enhances lipid production and omega-3 long-chain polyunsaturated fatty acid content
BACKGROUND: Oleaginous microalgae represent a valuable resource for the production of high-value molecules. Considering the importance of omega-3 long-chain polyunsaturated fatty acids (LC-PUFAs) for human health and nutrition the yields of high-value eicosapentaenoic acid (EPA) and docosahexaenoic...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7227059/ https://www.ncbi.nlm.nih.gov/pubmed/32467729 http://dx.doi.org/10.1186/s13068-020-01726-8 |
Sumario: | BACKGROUND: Oleaginous microalgae represent a valuable resource for the production of high-value molecules. Considering the importance of omega-3 long-chain polyunsaturated fatty acids (LC-PUFAs) for human health and nutrition the yields of high-value eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) require significant improvement to meet demand; however, the current cost of production remains high. A promising approach is to metabolically engineer strains with enhanced levels of triacylglycerols (TAGs) enriched in EPA and DHA. RESULTS: Recently, we have engineered the marine diatom Phaeodactylum tricornutum to accumulate enhanced levels of DHA in TAG. To further improve the incorporation of omega-3 LC-PUFAs in TAG, we focused our effort on the identification of a type 2 acyl-CoA:diacylglycerol acyltransferase (DGAT) capable of improving lipid production and the incorporation of DHA in TAG. DGAT is a key enzyme in lipid synthesis. Following a diatom based in vivo screen of candidate DGATs, a native P. tricornutum DGAT2B was taken forward for detailed characterisation. Overexpression of the endogenous P. tricornutum DGAT2B was confirmed by qRT-PCR and the transgenic strain grew successfully in comparison to wildtype. PtDGAT2B has broad substrate specificity with preferences for C16 and LC-PUFAs acyl groups. Moreover, the overexpression of an endogenous DGAT2B resulted in higher lipid yields and enhanced levels of DHA in TAG. Furthermore, a combined overexpression of the endogenous DGAT2B and ectopic expression of a Δ5-elongase showed how iterative metabolic engineering can be used to increase DHA and TAG content, irrespective of nitrogen treatment. CONCLUSION: This study provides further insight into lipid metabolism in P. tricornutum and suggests a metabolic engineering approach for the efficient production of EPA and DHA in microalgae. |
---|