Cargando…
I am all ears: Maximize maize doubled haploid success by promoting axillary branch elongation
The maize doubled haploid (DH) technology plays an important role in accelerating breeding genetic gain. One major challenge in fully leveraging the potential of DH technology to accelerate genetic gain is obtaining a consistent seed return from haploid (DH0) plants after chromosome doubling. Here w...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7227119/ https://www.ncbi.nlm.nih.gov/pubmed/32426692 http://dx.doi.org/10.1002/pld3.226 |
_version_ | 1783534435900063744 |
---|---|
author | Wu, Miin‐Feng Goldshmidt, Alexander Ovadya, Daniel Larue, Huachun |
author_facet | Wu, Miin‐Feng Goldshmidt, Alexander Ovadya, Daniel Larue, Huachun |
author_sort | Wu, Miin‐Feng |
collection | PubMed |
description | The maize doubled haploid (DH) technology plays an important role in accelerating breeding genetic gain. One major challenge in fully leveraging the potential of DH technology to accelerate genetic gain is obtaining a consistent seed return from haploid (DH0) plants after chromosome doubling. Here we demonstrated that DH0 seed production can be increased by increasing the number of mature axillary female inflorescences (ears) at anthesis. To determine the maximum capacity of a maize plant to develop ears, we first characterized the developmental progression of every axillary meristem. We found that all axillary meristems developed to a similar developmental stage before the reproductive transition of the shoot apical meristem (SAM). Upon reproductive transition of the SAM, all axillary meristems are released for reproductive development into ears in a developmental gradient reflective on their positions along the main stem. However, under most circumstances only the top one or two ears can generate silks at anthesis. We found that applying the GA inhibitor paclobutrazol (PAC) during the early reproductive transition of axillary meristems increased the number of silking ears at anthesis, leading to increased success of self‐pollination and seed production. These results provide a blueprint to improve DH efficiency and demonstrate the potential of breeding innovation through understanding crops’ developmental processes. |
format | Online Article Text |
id | pubmed-7227119 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-72271192020-05-18 I am all ears: Maximize maize doubled haploid success by promoting axillary branch elongation Wu, Miin‐Feng Goldshmidt, Alexander Ovadya, Daniel Larue, Huachun Plant Direct Original Research The maize doubled haploid (DH) technology plays an important role in accelerating breeding genetic gain. One major challenge in fully leveraging the potential of DH technology to accelerate genetic gain is obtaining a consistent seed return from haploid (DH0) plants after chromosome doubling. Here we demonstrated that DH0 seed production can be increased by increasing the number of mature axillary female inflorescences (ears) at anthesis. To determine the maximum capacity of a maize plant to develop ears, we first characterized the developmental progression of every axillary meristem. We found that all axillary meristems developed to a similar developmental stage before the reproductive transition of the shoot apical meristem (SAM). Upon reproductive transition of the SAM, all axillary meristems are released for reproductive development into ears in a developmental gradient reflective on their positions along the main stem. However, under most circumstances only the top one or two ears can generate silks at anthesis. We found that applying the GA inhibitor paclobutrazol (PAC) during the early reproductive transition of axillary meristems increased the number of silking ears at anthesis, leading to increased success of self‐pollination and seed production. These results provide a blueprint to improve DH efficiency and demonstrate the potential of breeding innovation through understanding crops’ developmental processes. John Wiley and Sons Inc. 2020-05-15 /pmc/articles/PMC7227119/ /pubmed/32426692 http://dx.doi.org/10.1002/pld3.226 Text en © 2020 The Authors. Plant Direct published by American Society of Plant Biologists, Society for Experimental Biology and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Wu, Miin‐Feng Goldshmidt, Alexander Ovadya, Daniel Larue, Huachun I am all ears: Maximize maize doubled haploid success by promoting axillary branch elongation |
title | I am all ears: Maximize maize doubled haploid success by promoting axillary branch elongation |
title_full | I am all ears: Maximize maize doubled haploid success by promoting axillary branch elongation |
title_fullStr | I am all ears: Maximize maize doubled haploid success by promoting axillary branch elongation |
title_full_unstemmed | I am all ears: Maximize maize doubled haploid success by promoting axillary branch elongation |
title_short | I am all ears: Maximize maize doubled haploid success by promoting axillary branch elongation |
title_sort | i am all ears: maximize maize doubled haploid success by promoting axillary branch elongation |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7227119/ https://www.ncbi.nlm.nih.gov/pubmed/32426692 http://dx.doi.org/10.1002/pld3.226 |
work_keys_str_mv | AT wumiinfeng iamallearsmaximizemaizedoubledhaploidsuccessbypromotingaxillarybranchelongation AT goldshmidtalexander iamallearsmaximizemaizedoubledhaploidsuccessbypromotingaxillarybranchelongation AT ovadyadaniel iamallearsmaximizemaizedoubledhaploidsuccessbypromotingaxillarybranchelongation AT laruehuachun iamallearsmaximizemaizedoubledhaploidsuccessbypromotingaxillarybranchelongation |