Cargando…
Exponential Time Differencing Algorithm for Pulse-Coupled Hodgkin-Huxley Neural Networks
The exponential time differencing (ETD) method allows using a large time step to efficiently evolve stiff systems such as Hodgkin-Huxley (HH) neural networks. For pulse-coupled HH networks, the synaptic spike times cannot be predetermined and are convoluted with neuron's trajectory itself. This...
Autores principales: | Tian, Zhong-qi Kyle, Zhou, Douglas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7227390/ https://www.ncbi.nlm.nih.gov/pubmed/32457589 http://dx.doi.org/10.3389/fncom.2020.00040 |
Ejemplares similares
-
Predicting Spike Features of Hodgkin-Huxley-Type Neurons With Simple Artificial Neural Network
por: Wang, Tian, et al.
Publicado: (2022) -
The Energy Coding of a Structural Neural Network Based on the Hodgkin–Huxley Model
por: Zhu, Zhenyu, et al.
Publicado: (2018) -
FPGA implementation of a biological neural network based on the Hodgkin-Huxley neuron model
por: Yaghini Bonabi, Safa, et al.
Publicado: (2014) -
The ISI distribution of the stochastic Hodgkin-Huxley neuron
por: Rowat, Peter F., et al.
Publicado: (2014) -
Exponential Time Differencing Method for Studying Prey-Predator Dynamic during Mating Period
por: Aljahdaly, Noufe H., et al.
Publicado: (2021)