Cargando…
Exploring environmental coverages of species: a new variable contribution estimation methodology for rulesets from the genetic algorithm for rule-set prediction
Variable contribution estimation for, and determination of variable importance within, ecological niche models (ENMs) remain an important area of research with continuing challenges. Most ENM algorithms provide normally exhaustive searches through variable space; however, selecting variables to incl...
Autores principales: | Yang, Anni, Gomez, Juan Pablo, Blackburn, Jason K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7227675/ https://www.ncbi.nlm.nih.gov/pubmed/32440371 http://dx.doi.org/10.7717/peerj.8968 |
Ejemplares similares
-
Exploring spatial nonstationary environmental effects on Yellow Perch distribution in Lake Erie
por: Liu, Changdong, et al.
Publicado: (2019) -
Global mapping of potential natural vegetation: an assessment of machine learning algorithms for estimating land potential
por: Hengl, Tomislav, et al.
Publicado: (2018) -
Playing by the rules? Phenotypic adaptation to temperate environments in an American marsupial
por: Nigenda-Morales, Sergio F., et al.
Publicado: (2018) -
Ecosystem services show variable responses to future climate conditions in the Colombian páramos
por: Diazgranados, Mauricio, et al.
Publicado: (2021) -
Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables
por: Hengl, Tomislav, et al.
Publicado: (2018)