Cargando…
Differential Expression of Plasma Exo-miRNA in Neurodegenerative Diseases by Next-Generation Sequencing
Neurodegenerative diseases encompass a wide variety of pathological conditions caused by a loss of neurons in the central nervous system (CNS) and are severely debilitating. Exosome contains bio-signatures of great diagnostic and therapeutic value. There is proof that exosomal proteins can be biomar...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7227778/ https://www.ncbi.nlm.nih.gov/pubmed/32457573 http://dx.doi.org/10.3389/fnins.2020.00438 |
_version_ | 1783534557833723904 |
---|---|
author | Nie, Chao Sun, Yuzhe Zhen, Hefu Guo, Mei Ye, Jingyu Liu, Zhili Yang, Yan Zhang, Xiuqing |
author_facet | Nie, Chao Sun, Yuzhe Zhen, Hefu Guo, Mei Ye, Jingyu Liu, Zhili Yang, Yan Zhang, Xiuqing |
author_sort | Nie, Chao |
collection | PubMed |
description | Neurodegenerative diseases encompass a wide variety of pathological conditions caused by a loss of neurons in the central nervous system (CNS) and are severely debilitating. Exosome contains bio-signatures of great diagnostic and therapeutic value. There is proof that exosomal proteins can be biomarkers for Alzheimer’s disease (AD) and Parkinson’s disease (PD). MicroRNAs in exosome has potential to be an important source of biomarkers for neurodegenerative diseases. Here, we report exosomal microRNA performance of human plasma in neurodegenerative diseases by small RNA sequencing. A wide range of altered exo-miRNA expression levels were detected in both AD and PD patients. Down-regulated miRNAs in AD samples were enriched in ECM-receptor interaction pathway and both up-/down-regulated miRNAs in PD samples were enriched in fatty acid biosynthesis pathway. Compared to the control, 8 miRNAs were found to be significantly elevated/declined in AD and PD samples, of which 4 miRNAs were newly identified. Additionally, two exosome isolating methods were compared and the reproducibility of plasma exo-miRNA expression was confirmed, suggesting the feasibility of large-scale clinical application of this method. This study revealed exo-miRNA expression levels in neurodegenerative diseases, proposed new biomarkers and their potential functional pathway for AD and PD, confirmed the reproductivity of exo-miRNA profiles by using a different exosome isolating method, and compared the results with plasma miRNA expression. Therefore, this study also provides a precedent for identifying exosomal biomarkers of neurodegenerative diseases in plasma by high-throughput sequencing and it could extend the therapeutic repertoire of exosomal biomarkers. |
format | Online Article Text |
id | pubmed-7227778 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-72277782020-05-25 Differential Expression of Plasma Exo-miRNA in Neurodegenerative Diseases by Next-Generation Sequencing Nie, Chao Sun, Yuzhe Zhen, Hefu Guo, Mei Ye, Jingyu Liu, Zhili Yang, Yan Zhang, Xiuqing Front Neurosci Neuroscience Neurodegenerative diseases encompass a wide variety of pathological conditions caused by a loss of neurons in the central nervous system (CNS) and are severely debilitating. Exosome contains bio-signatures of great diagnostic and therapeutic value. There is proof that exosomal proteins can be biomarkers for Alzheimer’s disease (AD) and Parkinson’s disease (PD). MicroRNAs in exosome has potential to be an important source of biomarkers for neurodegenerative diseases. Here, we report exosomal microRNA performance of human plasma in neurodegenerative diseases by small RNA sequencing. A wide range of altered exo-miRNA expression levels were detected in both AD and PD patients. Down-regulated miRNAs in AD samples were enriched in ECM-receptor interaction pathway and both up-/down-regulated miRNAs in PD samples were enriched in fatty acid biosynthesis pathway. Compared to the control, 8 miRNAs were found to be significantly elevated/declined in AD and PD samples, of which 4 miRNAs were newly identified. Additionally, two exosome isolating methods were compared and the reproducibility of plasma exo-miRNA expression was confirmed, suggesting the feasibility of large-scale clinical application of this method. This study revealed exo-miRNA expression levels in neurodegenerative diseases, proposed new biomarkers and their potential functional pathway for AD and PD, confirmed the reproductivity of exo-miRNA profiles by using a different exosome isolating method, and compared the results with plasma miRNA expression. Therefore, this study also provides a precedent for identifying exosomal biomarkers of neurodegenerative diseases in plasma by high-throughput sequencing and it could extend the therapeutic repertoire of exosomal biomarkers. Frontiers Media S.A. 2020-05-07 /pmc/articles/PMC7227778/ /pubmed/32457573 http://dx.doi.org/10.3389/fnins.2020.00438 Text en Copyright © 2020 Nie, Sun, Zhen, Guo, Ye, Liu, Yang and Zhang. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Nie, Chao Sun, Yuzhe Zhen, Hefu Guo, Mei Ye, Jingyu Liu, Zhili Yang, Yan Zhang, Xiuqing Differential Expression of Plasma Exo-miRNA in Neurodegenerative Diseases by Next-Generation Sequencing |
title | Differential Expression of Plasma Exo-miRNA in Neurodegenerative Diseases by Next-Generation Sequencing |
title_full | Differential Expression of Plasma Exo-miRNA in Neurodegenerative Diseases by Next-Generation Sequencing |
title_fullStr | Differential Expression of Plasma Exo-miRNA in Neurodegenerative Diseases by Next-Generation Sequencing |
title_full_unstemmed | Differential Expression of Plasma Exo-miRNA in Neurodegenerative Diseases by Next-Generation Sequencing |
title_short | Differential Expression of Plasma Exo-miRNA in Neurodegenerative Diseases by Next-Generation Sequencing |
title_sort | differential expression of plasma exo-mirna in neurodegenerative diseases by next-generation sequencing |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7227778/ https://www.ncbi.nlm.nih.gov/pubmed/32457573 http://dx.doi.org/10.3389/fnins.2020.00438 |
work_keys_str_mv | AT niechao differentialexpressionofplasmaexomirnainneurodegenerativediseasesbynextgenerationsequencing AT sunyuzhe differentialexpressionofplasmaexomirnainneurodegenerativediseasesbynextgenerationsequencing AT zhenhefu differentialexpressionofplasmaexomirnainneurodegenerativediseasesbynextgenerationsequencing AT guomei differentialexpressionofplasmaexomirnainneurodegenerativediseasesbynextgenerationsequencing AT yejingyu differentialexpressionofplasmaexomirnainneurodegenerativediseasesbynextgenerationsequencing AT liuzhili differentialexpressionofplasmaexomirnainneurodegenerativediseasesbynextgenerationsequencing AT yangyan differentialexpressionofplasmaexomirnainneurodegenerativediseasesbynextgenerationsequencing AT zhangxiuqing differentialexpressionofplasmaexomirnainneurodegenerativediseasesbynextgenerationsequencing |