Cargando…
Neural networks for open and closed Literature-based Discovery
Literature-based Discovery (LBD) aims to discover new knowledge automatically from large collections of literature. Scientific literature is growing at an exponential rate, making it difficult for researchers to stay current in their discipline and easy to miss knowledge necessary to advance their r...
Autores principales: | Crichton, Gamal, Baker, Simon, Guo, Yufan, Korhonen, Anna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7228051/ https://www.ncbi.nlm.nih.gov/pubmed/32413059 http://dx.doi.org/10.1371/journal.pone.0232891 |
Ejemplares similares
-
Neural networks for link prediction in realistic biomedical graphs: a multi-dimensional evaluation of graph embedding-based approaches
por: Crichton, Gamal, et al.
Publicado: (2018) -
A neural network multi-task learning approach to biomedical named entity recognition
por: Crichton, Gamal, et al.
Publicado: (2017) -
LION LBD: a literature-based discovery system for cancer biology
por: Pyysalo, Sampo, et al.
Publicado: (2019) -
Link prediction in drug-target interactions network using similarity indices
por: Lu, Yiding, et al.
Publicado: (2017) -
Cancer Hallmarks Analytics Tool (CHAT): a text mining approach to organize and evaluate scientific literature on cancer
por: Baker, Simon, et al.
Publicado: (2017)