Cargando…
A simple model for glioma grading based on texture analysis applied to conventional brain MRI
Accuracy of glioma grading is fundamental for the diagnosis, treatment planning and prognosis of patients. The purpose of this work was to develop a low-cost and easy-to-implement classification model which distinguishes low-grade gliomas (LGGs) from high-grade gliomas (HGGs), through texture analys...
Autores principales: | Suárez-García, José Gerardo, Hernández-López, Javier Miguel, Moreno-Barbosa, Eduardo, de Celis-Alonso, Benito |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7228074/ https://www.ncbi.nlm.nih.gov/pubmed/32413034 http://dx.doi.org/10.1371/journal.pone.0228972 |
Ejemplares similares
-
Monte Carlo simulation of the effect of magnetic fields on brachytherapy dose distributions in lung tissue material
por: Moreno-Barbosa, Fernando, et al.
Publicado: (2020) -
Texture feature analysis of MRI-ADC images to differentiate glioma grades using machine learning techniques
por: Vijithananda, Sahan M., et al.
Publicado: (2023) -
Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features
por: Zhang, Xin, et al.
Publicado: (2017) -
Conventional MRI Criteria to Differentiate Progressive Disease From Treatment-Induced Effects in High-Grade (WHO Grade 3–4) Gliomas
por: Flies, Christina M., et al.
Publicado: (2022) -
Conventional MRI features can predict the molecular subtype of adult grade 2–3 intracranial diffuse gliomas
por: Lasocki, Arian, et al.
Publicado: (2022)