Cargando…
A Quantile-Based g-Computation Approach to Addressing the Effects of Exposure Mixtures
BACKGROUND: Exposure mixtures frequently occur in data across many domains, particularly in the fields of environmental and nutritional epidemiology. Various strategies have arisen to answer questions about exposure mixtures, including methods such as weighted quantile sum (WQS) regression that esti...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Environmental Health Perspectives
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7228100/ https://www.ncbi.nlm.nih.gov/pubmed/32255670 http://dx.doi.org/10.1289/EHP5838 |
_version_ | 1783534576480550912 |
---|---|
author | Keil, Alexander P. Buckley, Jessie P. O’Brien, Katie M. Ferguson, Kelly K. Zhao, Shanshan White, Alexandra J. |
author_facet | Keil, Alexander P. Buckley, Jessie P. O’Brien, Katie M. Ferguson, Kelly K. Zhao, Shanshan White, Alexandra J. |
author_sort | Keil, Alexander P. |
collection | PubMed |
description | BACKGROUND: Exposure mixtures frequently occur in data across many domains, particularly in the fields of environmental and nutritional epidemiology. Various strategies have arisen to answer questions about exposure mixtures, including methods such as weighted quantile sum (WQS) regression that estimate a joint effect of the mixture components. OBJECTIVES: We demonstrate a new approach to estimating the joint effects of a mixture: quantile g-computation. This approach combines the inferential simplicity of WQS regression with the flexibility of g-computation, a method of causal effect estimation. We use simulations to examine whether quantile g-computation and WQS regression can accurately and precisely estimate the effects of mixtures in a variety of common scenarios. METHODS: We examine the bias, confidence interval (CI) coverage, and bias–variance tradeoff of quantile g-computation and WQS regression and how these quantities are impacted by the presence of noncausal exposures, exposure correlation, unmeasured confounding, and nonlinearity of exposure effects. RESULTS: Quantile g-computation, unlike WQS regression, allows inference on mixture effects that is unbiased with appropriate CI coverage at sample sizes typically encountered in epidemiologic studies and when the assumptions of WQS regression are not met. Further, WQS regression can magnify bias from unmeasured confounding that might occur if important components of the mixture are omitted from the analysis. DISCUSSION: Unlike inferential approaches that examine the effects of individual exposures while holding other exposures constant, methods like quantile g-computation that can estimate the effect of a mixture are essential for understanding the effects of potential public health actions that act on exposure sources. Our approach may serve to help bridge gaps between epidemiologic analysis and interventions such as regulations on industrial emissions or mining processes, dietary changes, or consumer behavioral changes that act on multiple exposures simultaneously. https://doi.org/10.1289/EHP5838 |
format | Online Article Text |
id | pubmed-7228100 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Environmental Health Perspectives |
record_format | MEDLINE/PubMed |
spelling | pubmed-72281002020-05-18 A Quantile-Based g-Computation Approach to Addressing the Effects of Exposure Mixtures Keil, Alexander P. Buckley, Jessie P. O’Brien, Katie M. Ferguson, Kelly K. Zhao, Shanshan White, Alexandra J. Environ Health Perspect Research BACKGROUND: Exposure mixtures frequently occur in data across many domains, particularly in the fields of environmental and nutritional epidemiology. Various strategies have arisen to answer questions about exposure mixtures, including methods such as weighted quantile sum (WQS) regression that estimate a joint effect of the mixture components. OBJECTIVES: We demonstrate a new approach to estimating the joint effects of a mixture: quantile g-computation. This approach combines the inferential simplicity of WQS regression with the flexibility of g-computation, a method of causal effect estimation. We use simulations to examine whether quantile g-computation and WQS regression can accurately and precisely estimate the effects of mixtures in a variety of common scenarios. METHODS: We examine the bias, confidence interval (CI) coverage, and bias–variance tradeoff of quantile g-computation and WQS regression and how these quantities are impacted by the presence of noncausal exposures, exposure correlation, unmeasured confounding, and nonlinearity of exposure effects. RESULTS: Quantile g-computation, unlike WQS regression, allows inference on mixture effects that is unbiased with appropriate CI coverage at sample sizes typically encountered in epidemiologic studies and when the assumptions of WQS regression are not met. Further, WQS regression can magnify bias from unmeasured confounding that might occur if important components of the mixture are omitted from the analysis. DISCUSSION: Unlike inferential approaches that examine the effects of individual exposures while holding other exposures constant, methods like quantile g-computation that can estimate the effect of a mixture are essential for understanding the effects of potential public health actions that act on exposure sources. Our approach may serve to help bridge gaps between epidemiologic analysis and interventions such as regulations on industrial emissions or mining processes, dietary changes, or consumer behavioral changes that act on multiple exposures simultaneously. https://doi.org/10.1289/EHP5838 Environmental Health Perspectives 2020-04-07 /pmc/articles/PMC7228100/ /pubmed/32255670 http://dx.doi.org/10.1289/EHP5838 Text en https://ehp.niehs.nih.gov/about-ehp/license EHP is an open-access journal published with support from the National Institute of Environmental Health Sciences, National Institutes of Health. All content is public domain unless otherwise noted. |
spellingShingle | Research Keil, Alexander P. Buckley, Jessie P. O’Brien, Katie M. Ferguson, Kelly K. Zhao, Shanshan White, Alexandra J. A Quantile-Based g-Computation Approach to Addressing the Effects of Exposure Mixtures |
title | A Quantile-Based g-Computation Approach to Addressing the Effects of Exposure Mixtures |
title_full | A Quantile-Based g-Computation Approach to Addressing the Effects of Exposure Mixtures |
title_fullStr | A Quantile-Based g-Computation Approach to Addressing the Effects of Exposure Mixtures |
title_full_unstemmed | A Quantile-Based g-Computation Approach to Addressing the Effects of Exposure Mixtures |
title_short | A Quantile-Based g-Computation Approach to Addressing the Effects of Exposure Mixtures |
title_sort | quantile-based g-computation approach to addressing the effects of exposure mixtures |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7228100/ https://www.ncbi.nlm.nih.gov/pubmed/32255670 http://dx.doi.org/10.1289/EHP5838 |
work_keys_str_mv | AT keilalexanderp aquantilebasedgcomputationapproachtoaddressingtheeffectsofexposuremixtures AT buckleyjessiep aquantilebasedgcomputationapproachtoaddressingtheeffectsofexposuremixtures AT obrienkatiem aquantilebasedgcomputationapproachtoaddressingtheeffectsofexposuremixtures AT fergusonkellyk aquantilebasedgcomputationapproachtoaddressingtheeffectsofexposuremixtures AT zhaoshanshan aquantilebasedgcomputationapproachtoaddressingtheeffectsofexposuremixtures AT whitealexandraj aquantilebasedgcomputationapproachtoaddressingtheeffectsofexposuremixtures AT keilalexanderp quantilebasedgcomputationapproachtoaddressingtheeffectsofexposuremixtures AT buckleyjessiep quantilebasedgcomputationapproachtoaddressingtheeffectsofexposuremixtures AT obrienkatiem quantilebasedgcomputationapproachtoaddressingtheeffectsofexposuremixtures AT fergusonkellyk quantilebasedgcomputationapproachtoaddressingtheeffectsofexposuremixtures AT zhaoshanshan quantilebasedgcomputationapproachtoaddressingtheeffectsofexposuremixtures AT whitealexandraj quantilebasedgcomputationapproachtoaddressingtheeffectsofexposuremixtures |