Cargando…
Impact of dietary oxidized protein on oxidative status and performance in growing pigs
Rendered products from the meat industry can provide economical quality sources of proteins to the animal and feed industry. Similar to lipids, rendered proteins are susceptible to oxidation, yet the stability of these proteins is unclear. In addition, interest in understanding how oxidative stress...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7228673/ https://www.ncbi.nlm.nih.gov/pubmed/32219327 http://dx.doi.org/10.1093/jas/skaa097 |
_version_ | 1783534618249527296 |
---|---|
author | Frame, Carl A Johnson, Erika Kilburn, Logan Huff-Lonergan, Elisabeth Kerr, Brian J Serao, Mariana Rossoni |
author_facet | Frame, Carl A Johnson, Erika Kilburn, Logan Huff-Lonergan, Elisabeth Kerr, Brian J Serao, Mariana Rossoni |
author_sort | Frame, Carl A |
collection | PubMed |
description | Rendered products from the meat industry can provide economical quality sources of proteins to the animal and feed industry. Similar to lipids, rendered proteins are susceptible to oxidation, yet the stability of these proteins is unclear. In addition, interest in understanding how oxidative stress can impact efficiency in production animals is increasing. Recent studies show that consumption of oxidized lipids can lead to a change in the oxidative status of the animal as well as decreases in production efficiency. To date, little is known about how consumption of oxidized proteins impacts oxidative status and growth performance. The objectives of this study were to determine if feeding diets high in oxidized protein to growing pigs would: 1) impact growth performance and 2) induce oxidative stress. Thirty pigs (42 d old; initial body weight [BW] 12.49 ± 1.45 kg) were randomly assigned to one of three dietary treatments with increasing levels of oxidized protein. Spray-dried bovine plasma was used as the protein source and was either unheated upon arrival, heated at 45 °C for 4 d, or heated at 100 °C for 3 d. Diets were fed for 19 d and growth performance was measured. Blood plasma (days 0 and 18), jejunum, colon, and liver tissues (day 19) were collected to analyze for markers of oxidative stress (e.g., protein oxidation, lipid oxidation, DNA damage, and glutathione peroxidase activity). Average daily gain (ADG;P < 0.01) and average daily feed intake (ADFI;P < 0.01) had a positive linear relationship to increased protein oxidation, but there was no effect on gain to feed ratio. Furthermore, protein (P = 0.03) and fat (P < 0.01) digestibility were reduced with increased protein oxidation in the diet. Crypt depth showed a positive linear relationship with dietary protein oxidation levels (P = 0.02). A trend was observed in liver samples where pigs fed the plasma heated to 45 °C had increased lipid oxidation compared with pigs fed the plasma either unheated or heated to 100 °C (P = 0.09). DNA damage in the jejunum tended to have a linear relationship with the dietary protein oxidation level (P = 0.07). Even though results suggest dietary oxidized protein did not induce oxidative stress during short-term feeding, differences in performance, gut morphology, and digestibility are likely a result of reduced protein availability. |
format | Online Article Text |
id | pubmed-7228673 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-72286732020-07-13 Impact of dietary oxidized protein on oxidative status and performance in growing pigs Frame, Carl A Johnson, Erika Kilburn, Logan Huff-Lonergan, Elisabeth Kerr, Brian J Serao, Mariana Rossoni J Anim Sci Non Ruminant Nutrition Rendered products from the meat industry can provide economical quality sources of proteins to the animal and feed industry. Similar to lipids, rendered proteins are susceptible to oxidation, yet the stability of these proteins is unclear. In addition, interest in understanding how oxidative stress can impact efficiency in production animals is increasing. Recent studies show that consumption of oxidized lipids can lead to a change in the oxidative status of the animal as well as decreases in production efficiency. To date, little is known about how consumption of oxidized proteins impacts oxidative status and growth performance. The objectives of this study were to determine if feeding diets high in oxidized protein to growing pigs would: 1) impact growth performance and 2) induce oxidative stress. Thirty pigs (42 d old; initial body weight [BW] 12.49 ± 1.45 kg) were randomly assigned to one of three dietary treatments with increasing levels of oxidized protein. Spray-dried bovine plasma was used as the protein source and was either unheated upon arrival, heated at 45 °C for 4 d, or heated at 100 °C for 3 d. Diets were fed for 19 d and growth performance was measured. Blood plasma (days 0 and 18), jejunum, colon, and liver tissues (day 19) were collected to analyze for markers of oxidative stress (e.g., protein oxidation, lipid oxidation, DNA damage, and glutathione peroxidase activity). Average daily gain (ADG;P < 0.01) and average daily feed intake (ADFI;P < 0.01) had a positive linear relationship to increased protein oxidation, but there was no effect on gain to feed ratio. Furthermore, protein (P = 0.03) and fat (P < 0.01) digestibility were reduced with increased protein oxidation in the diet. Crypt depth showed a positive linear relationship with dietary protein oxidation levels (P = 0.02). A trend was observed in liver samples where pigs fed the plasma heated to 45 °C had increased lipid oxidation compared with pigs fed the plasma either unheated or heated to 100 °C (P = 0.09). DNA damage in the jejunum tended to have a linear relationship with the dietary protein oxidation level (P = 0.07). Even though results suggest dietary oxidized protein did not induce oxidative stress during short-term feeding, differences in performance, gut morphology, and digestibility are likely a result of reduced protein availability. Oxford University Press 2020-03-27 /pmc/articles/PMC7228673/ /pubmed/32219327 http://dx.doi.org/10.1093/jas/skaa097 Text en © The Author(s) 2020. Published by Oxford University Press on behalf of the American Society of Animal Science. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Non Ruminant Nutrition Frame, Carl A Johnson, Erika Kilburn, Logan Huff-Lonergan, Elisabeth Kerr, Brian J Serao, Mariana Rossoni Impact of dietary oxidized protein on oxidative status and performance in growing pigs |
title | Impact of dietary oxidized protein on oxidative status and performance in growing pigs |
title_full | Impact of dietary oxidized protein on oxidative status and performance in growing pigs |
title_fullStr | Impact of dietary oxidized protein on oxidative status and performance in growing pigs |
title_full_unstemmed | Impact of dietary oxidized protein on oxidative status and performance in growing pigs |
title_short | Impact of dietary oxidized protein on oxidative status and performance in growing pigs |
title_sort | impact of dietary oxidized protein on oxidative status and performance in growing pigs |
topic | Non Ruminant Nutrition |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7228673/ https://www.ncbi.nlm.nih.gov/pubmed/32219327 http://dx.doi.org/10.1093/jas/skaa097 |
work_keys_str_mv | AT framecarla impactofdietaryoxidizedproteinonoxidativestatusandperformanceingrowingpigs AT johnsonerika impactofdietaryoxidizedproteinonoxidativestatusandperformanceingrowingpigs AT kilburnlogan impactofdietaryoxidizedproteinonoxidativestatusandperformanceingrowingpigs AT hufflonerganelisabeth impactofdietaryoxidizedproteinonoxidativestatusandperformanceingrowingpigs AT kerrbrianj impactofdietaryoxidizedproteinonoxidativestatusandperformanceingrowingpigs AT seraomarianarossoni impactofdietaryoxidizedproteinonoxidativestatusandperformanceingrowingpigs |