Cargando…

Lipoprotein(a) plasma levels are not associated with incident microvascular complications in type 2 diabetes mellitus

AIMS/HYPOTHESIS: Microvascular disease in type 2 diabetes is a significant cause of end-stage renal disease, blindness and peripheral neuropathy. The strict control of known risk factors, e.g. lifestyle, hyperglycaemia, hypertension and dyslipidaemia, reduces the incidence of microvascular complicat...

Descripción completa

Detalles Bibliográficos
Autores principales: Singh, Sunny S., Rashid, Mardin, Lieverse, Aloysius G., Kronenberg, Florian, Lamina, Claudia, Mulder, Monique T., de Rijke, Yolanda B., Sijbrands, Eric J. G., van Hoek, Mandy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7228906/
https://www.ncbi.nlm.nih.gov/pubmed/32152647
http://dx.doi.org/10.1007/s00125-020-05120-9
Descripción
Sumario:AIMS/HYPOTHESIS: Microvascular disease in type 2 diabetes is a significant cause of end-stage renal disease, blindness and peripheral neuropathy. The strict control of known risk factors, e.g. lifestyle, hyperglycaemia, hypertension and dyslipidaemia, reduces the incidence of microvascular complications, but a residual risk remains. Lipoprotein (a) [Lp(a)] is a strong risk factor for macrovascular disease in the general population. We hypothesised that plasma Lp(a) levels and the LPA gene SNPs rs10455872 and rs3798220 are associated with the incident development of microvascular complications in type 2 diabetes. METHODS: Analyses were performed of data from the DiaGene study, a prospective study for complications of type 2 diabetes, collected in the city of Eindhoven, the Netherlands (n = 1886 individuals with type 2 diabetes, mean follow-up time = 6.97 years). To assess the relationship between plasma Lp(a) levels and the LPA SNPs with each newly developed microvascular complication (retinopathy n = 223, nephropathy n = 246, neuropathy n = 236), Cox proportional hazards models were applied and adjusted for risk factors for microvascular complications (age, sex, mean arterial pressure, non-HDL-cholesterol, HDL-cholesterol, BMI, duration of type 2 diabetes, HbA(1c) and smoking). RESULTS: No significant associations of Lp(a) plasma levels and the LPA SNPs rs10455872 and rs3798220 with prevalent or incident microvascular complications in type 2 diabetes were found. In line with previous observations the LPA SNPs rs10455872 and rs3798220 did influence the plasma Lp(a) levels. CONCLUSIONS/INTERPRETATION: Our data show no association between Lp(a) plasma levels and the LPA SNPs with known effect on Lp(a) plasma levels with the development of microvascular complications in type 2 diabetes. This indicates that Lp(a) does not play a major role in the development of microvascular complications. However, larger studies are needed to exclude minimal effects of Lp(a) on the development of microvascular complications. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00125-020-05120-9) contains peer-reviewed but unedited supplementary material, which is available to authorised users.