Cargando…
Experimental Demonstration of Supervised Learning in Spiking Neural Networks with Phase-Change Memory Synapses
Spiking neural networks (SNN) are computational models inspired by the brain’s ability to naturally encode and process information in the time domain. The added temporal dimension is believed to render them more computationally efficient than the conventional artificial neural networks, though their...
Autores principales: | Nandakumar, S. R., Boybat, Irem, Le Gallo, Manuel, Eleftheriou, Evangelos, Sebastian, Abu, Rajendran, Bipin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7228943/ https://www.ncbi.nlm.nih.gov/pubmed/32415108 http://dx.doi.org/10.1038/s41598-020-64878-5 |
Ejemplares similares
-
Neuromorphic computing with multi-memristive synapses
por: Boybat, Irem, et al.
Publicado: (2018) -
Accurate deep neural network inference using computational phase-change memory
por: Joshi, Vinay, et al.
Publicado: (2020) -
Mixed-Precision Deep Learning Based on Computational Memory
por: Nandakumar, S. R., et al.
Publicado: (2020) -
Memristive devices for brain-inspired computing: from materials, devices, and circuits to applications - computational memory, deep learning, and spiking neural networks
por: Spiga, Sabina, et al.
Publicado: (2020) -
Accelerating Inference of Convolutional Neural Networks Using In-memory Computing
por: Dazzi, Martino, et al.
Publicado: (2021)