Cargando…
Complete analytic solutions for convection-diffusion-reaction-source equations without using an inverse Laplace transform
Transient mass-transfer phenomena occurring in natural and engineered systems consist of convection, diffusion, and reaction processes. The coupled phenomena can be described by using the unsteady convection-diffusion-reaction (CDR) equation, which is classified in mathematics as a linear, parabolic...
Autor principal: | Kim, Albert S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7228951/ https://www.ncbi.nlm.nih.gov/pubmed/32415163 http://dx.doi.org/10.1038/s41598-020-63982-w |
Ejemplares similares
-
Laplace transform solution of differential equations; a programmed text
por: Strum, Robert D.
Publicado: (1968) -
Solutions of Laplace's equation
por: Ledermann, Walter, et al.
Publicado: (1961) -
Solutions of Laplace's equation
por: Bland, D R
Publicado: (1961) -
Laplace transform solution of differential equations: a programmed text
por: Strum, Robert D, et al.
Publicado: (1968) -
Handbook of numerical inversion of Laplace transforms
por: Krylov, Vladimir Ivanovich, et al.
Publicado: (1969)