Cargando…
AxoNet: A deep learning-based tool to count retinal ganglion cell axons
In this work, we develop a robust, extensible tool to automatically and accurately count retinal ganglion cell axons in optic nerve (ON) tissue images from various animal models of glaucoma. We adapted deep learning to regress pixelwise axon count density estimates, which were then integrated over t...
Autores principales: | Ritch, Matthew D., Hannon, Bailey G., Read, A. Thomas, Feola, Andrew J., Cull, Grant A., Reynaud, Juan, Morrison, John C., Burgoyne, Claude F., Pardue, Machelle T., Ethier, C. Ross |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7228952/ https://www.ncbi.nlm.nih.gov/pubmed/32415269 http://dx.doi.org/10.1038/s41598-020-64898-1 |
Ejemplares similares
-
AxoNet 2.0: A Deep Learning-Based Tool for Morphometric Analysis of Retinal Ganglion Cell Axons
por: Goyal, Vidisha, et al.
Publicado: (2023) -
Assessment of Visual and Retinal Function Following In Vivo Genipin-Induced Scleral Crosslinking
por: Hannon, Bailey G., et al.
Publicado: (2020) -
Morphometric Analysis of Retinal Ganglion Cell Axons in Normal and Glaucomatous Brown Norway Rats Optic Nerves
por: Goyal, Vidisha, et al.
Publicado: (2023) -
Structure and function of axo-axonic inhibition
por: Schneider-Mizell, Casey M, et al.
Publicado: (2021) -
Activity-Dependent Plasticity of Axo-axonic Synapses at the Axon Initial Segment
por: Pan-Vazquez, Alejandro, et al.
Publicado: (2020)