Cargando…
Osteoarthritis of the Temporomandibular Joint can be diagnosed earlier using biomarkers and machine learning
After chronic low back pain, Temporomandibular Joint (TMJ) disorders are the second most common musculoskeletal condition affecting 5 to 12% of the population, with an annual health cost estimated at $4 billion. Chronic disability in TMJ osteoarthritis (OA) increases with aging, and the main goal is...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7228972/ https://www.ncbi.nlm.nih.gov/pubmed/32415284 http://dx.doi.org/10.1038/s41598-020-64942-0 |
_version_ | 1783534671503556608 |
---|---|
author | Bianchi, Jonas de Oliveira Ruellas, Antônio Carlos Gonçalves, João Roberto Paniagua, Beatriz Prieto, Juan Carlos Styner, Martin Li, Tengfei Zhu, Hongtu Sugai, James Giannobile, William Benavides, Erika Soki, Fabiana Yatabe, Marilia Ashman, Lawrence Walker, David Soroushmehr, Reza Najarian, Kayvan Cevidanes, Lucia Helena Soares |
author_facet | Bianchi, Jonas de Oliveira Ruellas, Antônio Carlos Gonçalves, João Roberto Paniagua, Beatriz Prieto, Juan Carlos Styner, Martin Li, Tengfei Zhu, Hongtu Sugai, James Giannobile, William Benavides, Erika Soki, Fabiana Yatabe, Marilia Ashman, Lawrence Walker, David Soroushmehr, Reza Najarian, Kayvan Cevidanes, Lucia Helena Soares |
author_sort | Bianchi, Jonas |
collection | PubMed |
description | After chronic low back pain, Temporomandibular Joint (TMJ) disorders are the second most common musculoskeletal condition affecting 5 to 12% of the population, with an annual health cost estimated at $4 billion. Chronic disability in TMJ osteoarthritis (OA) increases with aging, and the main goal is to diagnosis before morphological degeneration occurs. Here, we address this challenge using advanced data science to capture, process and analyze 52 clinical, biological and high-resolution CBCT (radiomics) markers from TMJ OA patients and controls. We tested the diagnostic performance of four machine learning models: Logistic Regression, Random Forest, LightGBM, XGBoost. Headaches, Range of mouth opening without pain, Energy, Haralick Correlation, Entropy and interactions of TGF-β1 in Saliva and Headaches, VE-cadherin in Serum and Angiogenin in Saliva, VE-cadherin in Saliva and Headaches, PA1 in Saliva and Headaches, PA1 in Saliva and Range of mouth opening without pain; Gender and Muscle Soreness; Short Run Low Grey Level Emphasis and Headaches, Inverse Difference Moment and Trabecular Separation accurately diagnose early stages of this clinical condition. Our results show the XGBoost + LightGBM model with these features and interactions achieves the accuracy of 0.823, AUC 0.870, and F1-score 0.823 to diagnose the TMJ OA status. Thus, we expect to boost future studies into osteoarthritis patient-specific therapeutic interventions, and thereby improve the health of articular joints. |
format | Online Article Text |
id | pubmed-7228972 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-72289722020-05-26 Osteoarthritis of the Temporomandibular Joint can be diagnosed earlier using biomarkers and machine learning Bianchi, Jonas de Oliveira Ruellas, Antônio Carlos Gonçalves, João Roberto Paniagua, Beatriz Prieto, Juan Carlos Styner, Martin Li, Tengfei Zhu, Hongtu Sugai, James Giannobile, William Benavides, Erika Soki, Fabiana Yatabe, Marilia Ashman, Lawrence Walker, David Soroushmehr, Reza Najarian, Kayvan Cevidanes, Lucia Helena Soares Sci Rep Article After chronic low back pain, Temporomandibular Joint (TMJ) disorders are the second most common musculoskeletal condition affecting 5 to 12% of the population, with an annual health cost estimated at $4 billion. Chronic disability in TMJ osteoarthritis (OA) increases with aging, and the main goal is to diagnosis before morphological degeneration occurs. Here, we address this challenge using advanced data science to capture, process and analyze 52 clinical, biological and high-resolution CBCT (radiomics) markers from TMJ OA patients and controls. We tested the diagnostic performance of four machine learning models: Logistic Regression, Random Forest, LightGBM, XGBoost. Headaches, Range of mouth opening without pain, Energy, Haralick Correlation, Entropy and interactions of TGF-β1 in Saliva and Headaches, VE-cadherin in Serum and Angiogenin in Saliva, VE-cadherin in Saliva and Headaches, PA1 in Saliva and Headaches, PA1 in Saliva and Range of mouth opening without pain; Gender and Muscle Soreness; Short Run Low Grey Level Emphasis and Headaches, Inverse Difference Moment and Trabecular Separation accurately diagnose early stages of this clinical condition. Our results show the XGBoost + LightGBM model with these features and interactions achieves the accuracy of 0.823, AUC 0.870, and F1-score 0.823 to diagnose the TMJ OA status. Thus, we expect to boost future studies into osteoarthritis patient-specific therapeutic interventions, and thereby improve the health of articular joints. Nature Publishing Group UK 2020-05-15 /pmc/articles/PMC7228972/ /pubmed/32415284 http://dx.doi.org/10.1038/s41598-020-64942-0 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Bianchi, Jonas de Oliveira Ruellas, Antônio Carlos Gonçalves, João Roberto Paniagua, Beatriz Prieto, Juan Carlos Styner, Martin Li, Tengfei Zhu, Hongtu Sugai, James Giannobile, William Benavides, Erika Soki, Fabiana Yatabe, Marilia Ashman, Lawrence Walker, David Soroushmehr, Reza Najarian, Kayvan Cevidanes, Lucia Helena Soares Osteoarthritis of the Temporomandibular Joint can be diagnosed earlier using biomarkers and machine learning |
title | Osteoarthritis of the Temporomandibular Joint can be diagnosed earlier using biomarkers and machine learning |
title_full | Osteoarthritis of the Temporomandibular Joint can be diagnosed earlier using biomarkers and machine learning |
title_fullStr | Osteoarthritis of the Temporomandibular Joint can be diagnosed earlier using biomarkers and machine learning |
title_full_unstemmed | Osteoarthritis of the Temporomandibular Joint can be diagnosed earlier using biomarkers and machine learning |
title_short | Osteoarthritis of the Temporomandibular Joint can be diagnosed earlier using biomarkers and machine learning |
title_sort | osteoarthritis of the temporomandibular joint can be diagnosed earlier using biomarkers and machine learning |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7228972/ https://www.ncbi.nlm.nih.gov/pubmed/32415284 http://dx.doi.org/10.1038/s41598-020-64942-0 |
work_keys_str_mv | AT bianchijonas osteoarthritisofthetemporomandibularjointcanbediagnosedearlierusingbiomarkersandmachinelearning AT deoliveiraruellasantoniocarlos osteoarthritisofthetemporomandibularjointcanbediagnosedearlierusingbiomarkersandmachinelearning AT goncalvesjoaoroberto osteoarthritisofthetemporomandibularjointcanbediagnosedearlierusingbiomarkersandmachinelearning AT paniaguabeatriz osteoarthritisofthetemporomandibularjointcanbediagnosedearlierusingbiomarkersandmachinelearning AT prietojuancarlos osteoarthritisofthetemporomandibularjointcanbediagnosedearlierusingbiomarkersandmachinelearning AT stynermartin osteoarthritisofthetemporomandibularjointcanbediagnosedearlierusingbiomarkersandmachinelearning AT litengfei osteoarthritisofthetemporomandibularjointcanbediagnosedearlierusingbiomarkersandmachinelearning AT zhuhongtu osteoarthritisofthetemporomandibularjointcanbediagnosedearlierusingbiomarkersandmachinelearning AT sugaijames osteoarthritisofthetemporomandibularjointcanbediagnosedearlierusingbiomarkersandmachinelearning AT giannobilewilliam osteoarthritisofthetemporomandibularjointcanbediagnosedearlierusingbiomarkersandmachinelearning AT benavideserika osteoarthritisofthetemporomandibularjointcanbediagnosedearlierusingbiomarkersandmachinelearning AT sokifabiana osteoarthritisofthetemporomandibularjointcanbediagnosedearlierusingbiomarkersandmachinelearning AT yatabemarilia osteoarthritisofthetemporomandibularjointcanbediagnosedearlierusingbiomarkersandmachinelearning AT ashmanlawrence osteoarthritisofthetemporomandibularjointcanbediagnosedearlierusingbiomarkersandmachinelearning AT walkerdavid osteoarthritisofthetemporomandibularjointcanbediagnosedearlierusingbiomarkersandmachinelearning AT soroushmehrreza osteoarthritisofthetemporomandibularjointcanbediagnosedearlierusingbiomarkersandmachinelearning AT najariankayvan osteoarthritisofthetemporomandibularjointcanbediagnosedearlierusingbiomarkersandmachinelearning AT cevidanesluciahelenasoares osteoarthritisofthetemporomandibularjointcanbediagnosedearlierusingbiomarkersandmachinelearning |