Cargando…

Osteoarthritis of the Temporomandibular Joint can be diagnosed earlier using biomarkers and machine learning

After chronic low back pain, Temporomandibular Joint (TMJ) disorders are the second most common musculoskeletal condition affecting 5 to 12% of the population, with an annual health cost estimated at $4 billion. Chronic disability in TMJ osteoarthritis (OA) increases with aging, and the main goal is...

Descripción completa

Detalles Bibliográficos
Autores principales: Bianchi, Jonas, de Oliveira Ruellas, Antônio Carlos, Gonçalves, João Roberto, Paniagua, Beatriz, Prieto, Juan Carlos, Styner, Martin, Li, Tengfei, Zhu, Hongtu, Sugai, James, Giannobile, William, Benavides, Erika, Soki, Fabiana, Yatabe, Marilia, Ashman, Lawrence, Walker, David, Soroushmehr, Reza, Najarian, Kayvan, Cevidanes, Lucia Helena Soares
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7228972/
https://www.ncbi.nlm.nih.gov/pubmed/32415284
http://dx.doi.org/10.1038/s41598-020-64942-0
_version_ 1783534671503556608
author Bianchi, Jonas
de Oliveira Ruellas, Antônio Carlos
Gonçalves, João Roberto
Paniagua, Beatriz
Prieto, Juan Carlos
Styner, Martin
Li, Tengfei
Zhu, Hongtu
Sugai, James
Giannobile, William
Benavides, Erika
Soki, Fabiana
Yatabe, Marilia
Ashman, Lawrence
Walker, David
Soroushmehr, Reza
Najarian, Kayvan
Cevidanes, Lucia Helena Soares
author_facet Bianchi, Jonas
de Oliveira Ruellas, Antônio Carlos
Gonçalves, João Roberto
Paniagua, Beatriz
Prieto, Juan Carlos
Styner, Martin
Li, Tengfei
Zhu, Hongtu
Sugai, James
Giannobile, William
Benavides, Erika
Soki, Fabiana
Yatabe, Marilia
Ashman, Lawrence
Walker, David
Soroushmehr, Reza
Najarian, Kayvan
Cevidanes, Lucia Helena Soares
author_sort Bianchi, Jonas
collection PubMed
description After chronic low back pain, Temporomandibular Joint (TMJ) disorders are the second most common musculoskeletal condition affecting 5 to 12% of the population, with an annual health cost estimated at $4 billion. Chronic disability in TMJ osteoarthritis (OA) increases with aging, and the main goal is to diagnosis before morphological degeneration occurs. Here, we address this challenge using advanced data science to capture, process and analyze 52 clinical, biological and high-resolution CBCT (radiomics) markers from TMJ OA patients and controls. We tested the diagnostic performance of four machine learning models: Logistic Regression, Random Forest, LightGBM, XGBoost. Headaches, Range of mouth opening without pain, Energy, Haralick Correlation, Entropy and interactions of TGF-β1 in Saliva and Headaches, VE-cadherin in Serum and Angiogenin in Saliva, VE-cadherin in Saliva and Headaches, PA1 in Saliva and Headaches, PA1 in Saliva and Range of mouth opening without pain; Gender and Muscle Soreness; Short Run Low Grey Level Emphasis and Headaches, Inverse Difference Moment and Trabecular Separation accurately diagnose early stages of this clinical condition. Our results show the XGBoost + LightGBM model with these features and interactions achieves the accuracy of 0.823, AUC 0.870, and F1-score 0.823 to diagnose the TMJ OA status. Thus, we expect to boost future studies into osteoarthritis patient-specific therapeutic interventions, and thereby improve the health of articular joints.
format Online
Article
Text
id pubmed-7228972
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-72289722020-05-26 Osteoarthritis of the Temporomandibular Joint can be diagnosed earlier using biomarkers and machine learning Bianchi, Jonas de Oliveira Ruellas, Antônio Carlos Gonçalves, João Roberto Paniagua, Beatriz Prieto, Juan Carlos Styner, Martin Li, Tengfei Zhu, Hongtu Sugai, James Giannobile, William Benavides, Erika Soki, Fabiana Yatabe, Marilia Ashman, Lawrence Walker, David Soroushmehr, Reza Najarian, Kayvan Cevidanes, Lucia Helena Soares Sci Rep Article After chronic low back pain, Temporomandibular Joint (TMJ) disorders are the second most common musculoskeletal condition affecting 5 to 12% of the population, with an annual health cost estimated at $4 billion. Chronic disability in TMJ osteoarthritis (OA) increases with aging, and the main goal is to diagnosis before morphological degeneration occurs. Here, we address this challenge using advanced data science to capture, process and analyze 52 clinical, biological and high-resolution CBCT (radiomics) markers from TMJ OA patients and controls. We tested the diagnostic performance of four machine learning models: Logistic Regression, Random Forest, LightGBM, XGBoost. Headaches, Range of mouth opening without pain, Energy, Haralick Correlation, Entropy and interactions of TGF-β1 in Saliva and Headaches, VE-cadherin in Serum and Angiogenin in Saliva, VE-cadherin in Saliva and Headaches, PA1 in Saliva and Headaches, PA1 in Saliva and Range of mouth opening without pain; Gender and Muscle Soreness; Short Run Low Grey Level Emphasis and Headaches, Inverse Difference Moment and Trabecular Separation accurately diagnose early stages of this clinical condition. Our results show the XGBoost + LightGBM model with these features and interactions achieves the accuracy of 0.823, AUC 0.870, and F1-score 0.823 to diagnose the TMJ OA status. Thus, we expect to boost future studies into osteoarthritis patient-specific therapeutic interventions, and thereby improve the health of articular joints. Nature Publishing Group UK 2020-05-15 /pmc/articles/PMC7228972/ /pubmed/32415284 http://dx.doi.org/10.1038/s41598-020-64942-0 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Bianchi, Jonas
de Oliveira Ruellas, Antônio Carlos
Gonçalves, João Roberto
Paniagua, Beatriz
Prieto, Juan Carlos
Styner, Martin
Li, Tengfei
Zhu, Hongtu
Sugai, James
Giannobile, William
Benavides, Erika
Soki, Fabiana
Yatabe, Marilia
Ashman, Lawrence
Walker, David
Soroushmehr, Reza
Najarian, Kayvan
Cevidanes, Lucia Helena Soares
Osteoarthritis of the Temporomandibular Joint can be diagnosed earlier using biomarkers and machine learning
title Osteoarthritis of the Temporomandibular Joint can be diagnosed earlier using biomarkers and machine learning
title_full Osteoarthritis of the Temporomandibular Joint can be diagnosed earlier using biomarkers and machine learning
title_fullStr Osteoarthritis of the Temporomandibular Joint can be diagnosed earlier using biomarkers and machine learning
title_full_unstemmed Osteoarthritis of the Temporomandibular Joint can be diagnosed earlier using biomarkers and machine learning
title_short Osteoarthritis of the Temporomandibular Joint can be diagnosed earlier using biomarkers and machine learning
title_sort osteoarthritis of the temporomandibular joint can be diagnosed earlier using biomarkers and machine learning
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7228972/
https://www.ncbi.nlm.nih.gov/pubmed/32415284
http://dx.doi.org/10.1038/s41598-020-64942-0
work_keys_str_mv AT bianchijonas osteoarthritisofthetemporomandibularjointcanbediagnosedearlierusingbiomarkersandmachinelearning
AT deoliveiraruellasantoniocarlos osteoarthritisofthetemporomandibularjointcanbediagnosedearlierusingbiomarkersandmachinelearning
AT goncalvesjoaoroberto osteoarthritisofthetemporomandibularjointcanbediagnosedearlierusingbiomarkersandmachinelearning
AT paniaguabeatriz osteoarthritisofthetemporomandibularjointcanbediagnosedearlierusingbiomarkersandmachinelearning
AT prietojuancarlos osteoarthritisofthetemporomandibularjointcanbediagnosedearlierusingbiomarkersandmachinelearning
AT stynermartin osteoarthritisofthetemporomandibularjointcanbediagnosedearlierusingbiomarkersandmachinelearning
AT litengfei osteoarthritisofthetemporomandibularjointcanbediagnosedearlierusingbiomarkersandmachinelearning
AT zhuhongtu osteoarthritisofthetemporomandibularjointcanbediagnosedearlierusingbiomarkersandmachinelearning
AT sugaijames osteoarthritisofthetemporomandibularjointcanbediagnosedearlierusingbiomarkersandmachinelearning
AT giannobilewilliam osteoarthritisofthetemporomandibularjointcanbediagnosedearlierusingbiomarkersandmachinelearning
AT benavideserika osteoarthritisofthetemporomandibularjointcanbediagnosedearlierusingbiomarkersandmachinelearning
AT sokifabiana osteoarthritisofthetemporomandibularjointcanbediagnosedearlierusingbiomarkersandmachinelearning
AT yatabemarilia osteoarthritisofthetemporomandibularjointcanbediagnosedearlierusingbiomarkersandmachinelearning
AT ashmanlawrence osteoarthritisofthetemporomandibularjointcanbediagnosedearlierusingbiomarkersandmachinelearning
AT walkerdavid osteoarthritisofthetemporomandibularjointcanbediagnosedearlierusingbiomarkersandmachinelearning
AT soroushmehrreza osteoarthritisofthetemporomandibularjointcanbediagnosedearlierusingbiomarkersandmachinelearning
AT najariankayvan osteoarthritisofthetemporomandibularjointcanbediagnosedearlierusingbiomarkersandmachinelearning
AT cevidanesluciahelenasoares osteoarthritisofthetemporomandibularjointcanbediagnosedearlierusingbiomarkersandmachinelearning