Cargando…
Observation of an acoustic octupole topological insulator
Berry phase associated with energy bands in crystals can lead to quantised observables like quantised dipole polarizations in one-dimensional topological insulators. Recent theories have generalised the concept of quantised dipoles to multipoles, resulting in the discovery of multipole topological i...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7229046/ https://www.ncbi.nlm.nih.gov/pubmed/32415220 http://dx.doi.org/10.1038/s41467-020-16350-1 |
Sumario: | Berry phase associated with energy bands in crystals can lead to quantised observables like quantised dipole polarizations in one-dimensional topological insulators. Recent theories have generalised the concept of quantised dipoles to multipoles, resulting in the discovery of multipole topological insulators which exhibit a hierarchy of multipole topology: a quantised octupole moment in a three-dimensional bulk induces quantised quadrupole moments on its two-dimensional surfaces, which in turn induce quantised dipole moments on one-dimensional hinges. Here, we report on the realisation of an octupole topological insulator in a three-dimensional acoustic metamaterial. We observe zero-dimensional topological corner states, one-dimensional gapped hinge states, two-dimensional gapped surface states, and three-dimensional gapped bulk states, representing the hierarchy of octupole, quadrupole and dipole moments. Conditions for forming a nontrivial octupole moment are demonstrated by comparisons with two different lattice configurations having trivial octupole moments. Our work establishes the multipole topology and its full hierarchy in three-dimensional geometries. |
---|