Cargando…

MLR and ANN Approaches for Prediction of Synthetic/Natural Nanofibers Diameter in the Environmental and Medical Applications

Fiber diameter plays an important role in the properties of electrospinning of nanofibers. However, one major problem is the lack of a comprehensive method that can link processing parameters to nanofibers’ diameter. The objective of this study is to develope an artificial neural network (ANN) model...

Descripción completa

Detalles Bibliográficos
Autores principales: Kalantary, Saba, Jahani, Ali, Jahani, Reza
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7229181/
https://www.ncbi.nlm.nih.gov/pubmed/32415204
http://dx.doi.org/10.1038/s41598-020-65121-x
Descripción
Sumario:Fiber diameter plays an important role in the properties of electrospinning of nanofibers. However, one major problem is the lack of a comprehensive method that can link processing parameters to nanofibers’ diameter. The objective of this study is to develope an artificial neural network (ANN) modeling and multiple regression (MLR) analysis approaches to predict the diameter of nanofibers. Processing parameters, including weight ratio, voltage, injection rate, and distance, were considered as independent variables and the nanofiber diameter as the dependent variable of the ANN model. The results of ANN modeling, especially its high accuracy (R(2) = 0.959) in comparison with MLR results (R(2) = 0.564), introduced the prediction the diameter of nanofibers model (PDNFM) as a comparative model for predicting the diameter of poly (3-caprolactone) (PCL)/gelatin (Gt) nanofibers. According to the result of sensitivity analysis of the model, the values of weight ratio, distance, injection rate, and voltage, respectively, were identified as the most significant parameters which influence PDNFM.