Cargando…
Integrating molecular markers into metabolic models improves genomic selection for Arabidopsis growth
The current trends of crop yield improvements are not expected to meet the projected rise in demand. Genomic selection uses molecular markers and machine learning to identify superior genotypes with improved traits, such as growth. Plant growth directly depends on rates of metabolic reactions which...
Autores principales: | Tong, Hao, Küken, Anika, Nikoloski, Zoran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7229213/ https://www.ncbi.nlm.nih.gov/pubmed/32415110 http://dx.doi.org/10.1038/s41467-020-16279-5 |
Ejemplares similares
-
Characterization of effects of genetic variants via genome-scale metabolic modelling
por: Tong, Hao, et al.
Publicado: (2021) -
Photorespiratory Bypasses Lead to Increased Growth in Arabidopsis thaliana: Are Predictions Consistent with Experimental Evidence?
por: Basler, Georg, et al.
Publicado: (2016) -
The unraveling of balanced complexes in metabolic networks
por: Langary, Damoun, et al.
Publicado: (2023) -
The hidden simplicity of metabolic networks is revealed by multireaction dependencies
por: Küken, Anika, et al.
Publicado: (2022) -
The effective deficiency of biochemical networks
por: Langary, Damoun, et al.
Publicado: (2023)