Cargando…
CONNET: Accurate Genome Consensus in Assembling Nanopore Sequencing Data via Deep Learning
Single-molecule sequencing technologies produce much longer reads compared with next-generation sequencing, greatly improving the contiguity of de novo assembly of genomes. However, the relatively high error rates in long reads make it challenging to obtain high-quality assemblies. A computationally...
Autores principales: | Zhang, Yifan, Liu, Chi-Man, Leung, Henry C.M., Luo, Ruibang, Lam, Tak-Wah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7229283/ https://www.ncbi.nlm.nih.gov/pubmed/32422594 http://dx.doi.org/10.1016/j.isci.2020.101128 |
Ejemplares similares
-
Duet: SNP-assisted structural variant calling and phasing using Oxford nanopore sequencing
por: Zhou, Yekai, et al.
Publicado: (2022) -
MegaGTA: a sensitive and accurate metagenomic gene-targeted assembler using iterative de Bruijn graphs
por: Li, Dinghua, et al.
Publicado: (2017) -
Assembly-free discovery of human novel sequences using long reads
por: Li, Qiuhui, et al.
Publicado: (2022) -
Clair3-trio: high-performance Nanopore long-read variant calling in family trios with trio-to-trio deep neural networks
por: Su, Junhao, et al.
Publicado: (2022) -
ECNano: A cost-effective workflow for target enrichment sequencing and accurate variant calling on 4800 clinically significant genes using a single MinION flowcell
por: Leung, Amy Wing-Sze, et al.
Publicado: (2022)